insurace_charge / app.py
carlosgonzalezmartinez's picture
Update app.py
1f5d511 verified
# Import the libraries
import os
import uuid
import joblib
import json
import gradio as gr
import pandas as pd
from pathlib import Path
from huggingface_hub import CommitScheduler
log_file = Path("logs/") / f"data_{uuid.uuid4()}.json"
log_folder = log_file.parent
scheduler = CommitScheduler(
repo_id="insurace-charge-logs",
repo_type="dataset",
folder_path=log_folder,
path_in_repo="data",
every=2
)
insurace_charge_predictor = joblib.load('model.joblib')
age_input = gr.Number(label="Age")
bmi_input = gr.Number(label='BMI')
children_input = gr.Number(label='Children')
sex_input = gr.Dropdown(['male', 'female'],label='Sex')
smoker_input = gr.Dropdown(['yes', 'no'],label='Smoker')
region_input = gr.Dropdown(['northwest', 'northeast', 'southeast', 'southwest'],label='Region')
model_output = gr.Label(label="charges")
def predict_insurance_charge(age, bmi, children, sex, smoker, region):
sample = {
'age': age,
'bmi': bmi,
'children': children,
'sex': sex,
'smoker': smoker,
'region': region,
}
data_point = pd.DataFrame([sample])
prediction = insurace_charge_predictor.predict(data_point).tolist()
with scheduler.lock:
with log_file.open("a") as f:
f.write(json.dumps(
{
'age': age,
'bmi': bmi,
'children' :children,
'sex': sex,
'smoker': smoker,
'region': region,
'prediction': prediction[0]
}
))
f.write("\n")
return prediction[0]
demo = gr.Interface(
fn=predict_insurance_charge,
inputs=[age_input,
bmi_input,
children_input,
sex_input,
smoker_input,
region_input],
outputs=model_output,
title="Charge Amount Prediction",
description="HealthyLife Insurance Charge Prediction",
allow_flagging="auto",
concurrency_limit=8
)
demo.queue()
demo.launch()
# Define the predict function which will take features, convert to dataframe and make predictions using the saved model
# Run the training script placed in the same directory as app.py
# The training script will train and persist a linear regression
# model with the filename 'model.joblib'
# Load the freshly trained model from disk
# Prepare the logging functionality
# Define the predict function which will take features, convert to dataframe and make predictions using the saved model
# the functions runs when 'Submit' is clicked or when a API request is made
# While the prediction is made, log both the inputs and outputs to a log file
# While writing to the log file, ensure that the commit scheduler is locked to avoid parallel
# access
# Set up UI components for input and output
# Create the gradio interface, make title "HealthyLife Insurance Charge Prediction"
# Launch with a load balancer
#demo.queue()
#demo.launch(share=False)