# Import the libraries import os import uuid import joblib import json import gradio as gr import pandas as pd from pathlib import Path from huggingface_hub import CommitScheduler log_file = Path("logs/") / f"data_{uuid.uuid4()}.json" log_folder = log_file.parent scheduler = CommitScheduler( repo_id="insurace-charge-logs", repo_type="dataset", folder_path=log_folder, path_in_repo="data", every=2 ) insurace_charge_predictor = joblib.load('model.joblib') age_input = gr.Number(label="Age") bmi_input = gr.Number(label='BMI') children_input = gr.Number(label='Children') sex_input = gr.Dropdown(['male', 'female'],label='Sex') smoker_input = gr.Dropdown(['yes', 'no'],label='Smoker') region_input = gr.Dropdown(['northwest', 'northeast', 'southeast', 'southwest'],label='Region') model_output = gr.Label(label="charges") def predict_insurance_charge(age, bmi, children, sex, smoker, region): sample = { 'age': age, 'bmi': bmi, 'children': children, 'sex': sex, 'smoker': smoker, 'region': region, } data_point = pd.DataFrame([sample]) prediction = insurace_charge_predictor.predict(data_point).tolist() with scheduler.lock: with log_file.open("a") as f: f.write(json.dumps( { 'age': age, 'bmi': bmi, 'children' :children, 'sex': sex, 'smoker': smoker, 'region': region, 'prediction': prediction[0] } )) f.write("\n") return prediction[0] demo = gr.Interface( fn=predict_insurance_charge, inputs=[age_input, bmi_input, children_input, sex_input, smoker_input, region_input], outputs=model_output, title="Charge Amount Prediction", description="HealthyLife Insurance Charge Prediction", allow_flagging="auto", concurrency_limit=8 ) demo.queue() demo.launch() # Define the predict function which will take features, convert to dataframe and make predictions using the saved model # Run the training script placed in the same directory as app.py # The training script will train and persist a linear regression # model with the filename 'model.joblib' # Load the freshly trained model from disk # Prepare the logging functionality # Define the predict function which will take features, convert to dataframe and make predictions using the saved model # the functions runs when 'Submit' is clicked or when a API request is made # While the prediction is made, log both the inputs and outputs to a log file # While writing to the log file, ensure that the commit scheduler is locked to avoid parallel # access # Set up UI components for input and output # Create the gradio interface, make title "HealthyLife Insurance Charge Prediction" # Launch with a load balancer #demo.queue() #demo.launch(share=False)