carolcarneiro's picture
update appy.py
bf5b22d verified
raw
history blame contribute delete
760 Bytes
from transformers import pipeline
import gradio as gr
import base64
import io
# calling pipeline to get_completion
get_completion = pipeline("image-classification",model="carolcarneiro/keras-dummy-sequential-demo")
def classify_image(image):
result = get_completion(image)
return result[0]['label']
# Criando a interface do Gradio
demo = gr.Interface(fn=classify_image,
inputs=gr.Image(label="Upload image", type="pil"),
outputs=gr.Textbox(label="Classification"),
title="Fashion MNIST Classification",
description="Classify the uploaded image as one of the Fashion MNIST categories",
allow_flagging="never")
# Iniciando a aplicação
demo.launch()