import os import json import pandas as pd import streamlit as st import matplotlib import plotly.express as px import plotly.graph_objects as go from openai import OpenAI from datetime import datetime from dotenv import load_dotenv load_dotenv() API_KEY = os.getenv("OPENAI_API_KEY") # Page configuration st.set_page_config( page_title="Softwares - Intelligent Software Procurement", page_icon="🎯", layout="wide", initial_sidebar_state="expanded" ) # Custom CSS st.markdown(""" """, unsafe_allow_html=True) # Initialize session state if 'api_key' not in st.session_state: st.session_state.api_key = API_KEY # load from env automatically if 'software_database' not in st.session_state: st.session_state.software_database = [] if 'compare_list' not in st.session_state: st.session_state.compare_list = [] if 'chat_history' not in st.session_state: st.session_state.chat_history = [] if 'user_requirements' not in st.session_state: st.session_state.user_requirements = {} # Sample software database SOFTWARE_DATABASE = [ # Original 12 products (with corrected data) { "name": "Zoom", "category": "Video Conferencing", "description": "HD video conferencing and virtual meetings platform", "pricing_min": 0, "pricing_max": 19.99, "pricing_unit": "user/month", "features": ["HD Video", "Screen Sharing", "Recording", "Breakout Rooms", "Webinar Mode"], "users": "300M+", "rating": 4.5, "negotiable": True, "g2_score": 4.5, "integrations": ["Slack", "Microsoft Teams", "Salesforce", "Google Calendar"], "compliance": ["SOC2", "GDPR", "HIPAA"] }, { "name": "Slack", "category": "Team Communication", "description": "Team messaging and collaboration platform", "pricing_min": 0, "pricing_max": 12.50, "pricing_unit": "user/month", "features": ["Channels", "Direct Messages", "File Sharing", "App Integrations", "Search"], "users": "50M+", "rating": 4.6, "negotiable": True, "g2_score": 4.5, "integrations": ["Google Drive", "Zoom", "Salesforce", "Jira"], "compliance": ["SOC2", "GDPR", "ISO27001"] }, { "name": "Microsoft Teams", "category": "Video Conferencing", "description": "Chat, meetings, calls, and collaboration in Office 365", "pricing_min": 0, "pricing_max": 12.50, "pricing_unit": "user/month", "features": ["Video Calls", "Chat", "File Storage", "Office Integration", "Teams Channels"], "users": "280M+", "rating": 4.4, "negotiable": False, "g2_score": 4.3, "integrations": ["Office 365", "SharePoint", "OneDrive", "Power BI"], "compliance": ["SOC2", "GDPR", "HIPAA", "ISO27001"] }, { "name": "Google Workspace", "category": "Email & Productivity", "description": "Email, docs, drive, and collaboration suite", "pricing_min": 6, "pricing_max": 18, "pricing_unit": "user/month", "features": ["Gmail", "Drive", "Docs/Sheets", "Meet", "Calendar", "Admin Console"], "users": "3B+", "rating": 4.7, "negotiable": False, "g2_score": 4.6, "integrations": ["Slack", "Zoom", "Salesforce", "Asana"], "compliance": ["SOC2", "GDPR", "HIPAA", "ISO27001"] }, { "name": "Asana", "category": "Project Management", "description": "Work management platform for team collaboration", "pricing_min": 0, "pricing_max": 24.99, "pricing_unit": "user/month", "features": ["Task Management", "Timelines", "Workflows", "Reporting", "Portfolios"], "users": "150M+", "rating": 4.5, "negotiable": True, "g2_score": 4.4, "integrations": ["Slack", "Google Drive", "Microsoft Teams", "Salesforce"], "compliance": ["SOC2", "GDPR", "ISO27001"] }, { "name": "Monday.com", "category": "Project Management", "description": "Work operating system for team productivity", "pricing_min": 8, "pricing_max": 16, "pricing_unit": "user/month", "features": ["Custom Workflows", "Dashboards", "Automations", "Time Tracking", "Forms"], "users": "180K+", "rating": 4.6, "negotiable": True, "g2_score": 4.7, "integrations": ["Slack", "Zoom", "Microsoft Teams", "Google Drive"], "compliance": ["SOC2", "GDPR", "ISO27001"] }, { "name": "Notion", "category": "Knowledge Management", "description": "All-in-one workspace for notes, docs, and wikis", "pricing_min": 0, "pricing_max": 10, "pricing_unit": "user/month", "features": ["Wiki", "Docs", "Databases", "Kanban Boards", "Templates"], "users": "30M+", "rating": 4.7, "negotiable": False, "g2_score": 4.7, "integrations": ["Slack", "Google Drive", "Figma", "GitHub"], "compliance": ["SOC2", "GDPR"] }, { "name": "Salesforce", "category": "CRM", "description": "Customer relationship management platform", "pricing_min": 25, "pricing_max": 300, "pricing_unit": "user/month", "features": ["Lead Management", "Sales Pipeline", "Analytics", "Mobile App", "Einstein AI"], "users": "150K+ companies", "rating": 4.4, "negotiable": True, "g2_score": 4.3, "integrations": ["Slack", "Google Workspace", "Microsoft 365", "Zoom"], "compliance": ["SOC2", "GDPR", "HIPAA", "ISO27001"] }, { "name": "Jira", "category": "Project Management", "description": "Issue tracking and agile project management", "pricing_min": 0, "pricing_max": 14.50, "pricing_unit": "user/month", "features": ["Scrum Boards", "Kanban", "Roadmaps", "Reports", "Automation"], "users": "65K+ companies", "rating": 4.4, "negotiable": False, "g2_score": 4.2, "integrations": ["Confluence", "Slack", "GitHub", "Microsoft Teams"], "compliance": ["SOC2", "GDPR", "ISO27001"] }, { "name": "Dropbox Business", "category": "Cloud Storage", "description": "Cloud storage and file sharing platform", "pricing_min": 12.50, "pricing_max": 20, "pricing_unit": "user/month", "features": ["Unlimited Storage", "Advanced Sharing", "Version History", "Admin Tools", "Paper"], "users": "700M+", "rating": 4.4, "negotiable": True, "g2_score": 4.4, "integrations": ["Slack", "Zoom", "Microsoft Office", "Google Workspace"], "compliance": ["SOC2", "GDPR", "HIPAA", "ISO27001"] }, { "name": "Figma", "category": "Design Tools", "description": "Collaborative interface design tool", "pricing_min": 0, "pricing_max": 15, "pricing_unit": "user/month", "features": ["Design", "Prototyping", "Real-time Collaboration", "Dev Mode", "FigJam"], "users": "4M+", "rating": 4.8, "negotiable": False, "g2_score": 4.7, "integrations": ["Slack", "Jira", "Notion", "Microsoft Teams"], "compliance": ["SOC2", "GDPR"] }, { "name": "GitHub Enterprise", "category": "Developer Tools", "description": "Code hosting and collaboration platform", "pricing_min": 21, "pricing_max": 21, "pricing_unit": "user/month", "features": ["Version Control", "CI/CD", "Code Review", "Security Scanning", "Actions"], "users": "100M+", "rating": 4.8, "negotiable": True, "g2_score": 4.7, "integrations": ["Slack", "Jira", "Microsoft Teams", "VS Code"], "compliance": ["SOC2", "GDPR", "ISO27001"] }, # New products (38 additional products) { "name": "Zendesk", "category": "Customer Service", "description": "Customer service and engagement platform", "pricing_min": 19, "pricing_max": 115, "pricing_unit": "user/month", "features": ["Ticketing System", "Live Chat", "Knowledge Base", "AI Automation", "Omnichannel Support"], "users": "100K+ companies", "rating": 4.3, "negotiable": True, "g2_score": 4.3, "integrations": ["Slack", "Salesforce", "Jira", "Microsoft Teams"], "compliance": ["SOC2", "GDPR", "HIPAA", "ISO27001"] }, { "name": "Intercom", "category": "Customer Service", "description": "Conversational relationship platform", "pricing_min": 74, "pricing_max": 150, "pricing_unit": "user/month", "features": ["Live Chat", "Chatbots", "Product Tours", "Email Marketing", "Help Center"], "users": "25K+ companies", "rating": 4.5, "negotiable": True, "g2_score": 4.5, "integrations": ["Slack", "Salesforce", "HubSpot", "Stripe"], "compliance": ["SOC2", "GDPR"] }, { "name": "HubSpot Service Hub", "category": "Customer Service", "description": "Customer service software with CRM integration", "pricing_min": 0, "pricing_max": 100, "pricing_unit": "user/month", "features": ["Ticketing", "Live Chat", "Customer Portal", "Knowledge Base", "Automation"], "users": "228K+ companies", "rating": 4.4, "negotiable": False, "g2_score": 4.4, "integrations": ["HubSpot CRM", "Slack", "Gmail", "Salesforce"], "compliance": ["SOC2", "GDPR", "HIPAA"] }, { "name": "HubSpot Marketing Hub", "category": "Marketing Automation", "description": "Inbound marketing and automation platform", "pricing_min": 0, "pricing_max": 3600, "pricing_unit": "month", "features": ["Email Marketing", "Marketing Automation", "Lead Management", "Analytics", "SEO Tools"], "users": "228K+ companies", "rating": 4.5, "negotiable": True, "g2_score": 4.4, "integrations": ["Salesforce", "WordPress", "Shopify", "Google Ads"], "compliance": ["SOC2", "GDPR", "HIPAA"] }, { "name": "Mailchimp", "category": "Marketing Automation", "description": "Email marketing and automation platform", "pricing_min": 0, "pricing_max": 350, "pricing_unit": "month", "features": ["Email Campaigns", "Marketing Automation", "Landing Pages", "Analytics", "CRM"], "users": "13M+", "rating": 4.3, "negotiable": False, "g2_score": 4.3, "integrations": ["Shopify", "WordPress", "Salesforce", "Google Analytics"], "compliance": ["SOC2", "GDPR"] }, { "name": "ActiveCampaign", "category": "Marketing Automation", "description": "Customer experience automation platform", "pricing_min": 15, "pricing_max": 259, "pricing_unit": "month", "features": ["Email Marketing", "Marketing Automation", "CRM", "Sales Automation", "Machine Learning"], "users": "180K+", "rating": 4.6, "negotiable": True, "g2_score": 4.5, "integrations": ["Shopify", "WordPress", "Salesforce", "Facebook"], "compliance": ["SOC2", "GDPR"] }, { "name": "Marketo", "category": "Marketing Automation", "description": "Enterprise marketing automation platform", "pricing_min": 895, "pricing_max": 3195, "pricing_unit": "month", "features": ["Lead Management", "Email Marketing", "Analytics", "Account-Based Marketing", "AI"], "users": "5K+ companies", "rating": 4.1, "negotiable": True, "g2_score": 4.1, "integrations": ["Salesforce", "Microsoft Dynamics", "Adobe Experience Cloud", "Zoom"], "compliance": ["SOC2", "GDPR", "HIPAA"] }, { "name": "BambooHR", "category": "HR Software", "description": "Human resources management platform", "pricing_min": 6, "pricing_max": 12, "pricing_unit": "user/month", "features": ["Employee Records", "Time Tracking", "Onboarding", "Performance Management", "Reporting"], "users": "33K+ companies", "rating": 4.6, "negotiable": True, "g2_score": 4.4, "integrations": ["Slack", "Google Workspace", "Paylocity", "ADP"], "compliance": ["SOC2", "GDPR"] }, { "name": "Gusto", "category": "HR Software", "description": "Payroll and HR platform for small businesses", "pricing_min": 40, "pricing_max": 80, "pricing_unit": "month", "features": ["Payroll", "Benefits", "Time Tracking", "HR Support", "Compliance"], "users": "300K+ companies", "rating": 4.6, "negotiable": False, "g2_score": 4.6, "integrations": ["QuickBooks", "Xero", "TSheets", "Slack"], "compliance": ["SOC2", "GDPR"] }, { "name": "Rippling", "category": "HR Software", "description": "Unified HR, IT, and finance platform", "pricing_min": 8, "pricing_max": 15, "pricing_unit": "user/month", "features": ["HR Management", "Payroll", "IT Management", "App Management", "Global Hiring"], "users": "10K+ companies", "rating": 4.9, "negotiable": True, "g2_score": 4.8, "integrations": ["Slack", "Google Workspace", "Okta", "Salesforce"], "compliance": ["SOC2", "GDPR", "ISO27001"] }, { "name": "Workday", "category": "HR Software", "description": "Enterprise cloud applications for finance and HR", "pricing_min": 100, "pricing_max": 300, "pricing_unit": "user/month", "features": ["HCM", "Financial Management", "Analytics", "Planning", "Payroll"], "users": "10K+ companies", "rating": 4.2, "negotiable": True, "g2_score": 4.0, "integrations": ["Slack", "Microsoft Teams", "Okta", "ServiceNow"], "compliance": ["SOC2", "GDPR", "HIPAA", "ISO27001"] }, { "name": "QuickBooks Online", "category": "Accounting", "description": "Cloud-based accounting software", "pricing_min": 35, "pricing_max": 200, "pricing_unit": "month", "features": ["Invoicing", "Expense Tracking", "Payroll", "Tax Filing", "Reporting"], "users": "7M+ companies", "rating": 4.3, "negotiable": False, "g2_score": 4.0, "integrations": ["Shopify", "PayPal", "Square", "Bill.com"], "compliance": ["SOC2", "GDPR"] }, { "name": "Xero", "category": "Accounting", "description": "Cloud accounting software for small business", "pricing_min": 15, "pricing_max": 78, "pricing_unit": "month", "features": ["Bank Reconciliation", "Invoicing", "Inventory", "Financial Reporting", "Multi-Currency"], "users": "3.5M+", "rating": 4.4, "negotiable": False, "g2_score": 4.3, "integrations": ["Shopify", "Stripe", "PayPal", "HubSpot"], "compliance": ["SOC2", "GDPR", "ISO27001"] }, { "name": "FreshBooks", "category": "Accounting", "description": "Accounting software for small businesses", "pricing_min": 19, "pricing_max": 60, "pricing_unit": "month", "features": ["Invoicing", "Expense Tracking", "Time Tracking", "Project Management", "Reporting"], "users": "30M+", "rating": 4.5, "negotiable": False, "g2_score": 4.5, "integrations": ["Stripe", "PayPal", "Google Apps", "Gusto"], "compliance": ["SOC2", "GDPR"] }, { "name": "Tableau", "category": "Analytics", "description": "Visual analytics and business intelligence platform", "pricing_min": 70, "pricing_max": 70, "pricing_unit": "user/month", "features": ["Data Visualization", "Dashboards", "Analytics", "Mobile", "Collaboration"], "users": "86K+ companies", "rating": 4.4, "negotiable": True, "g2_score": 4.4, "integrations": ["Salesforce", "Google Analytics", "AWS", "Snowflake"], "compliance": ["SOC2", "GDPR", "HIPAA"] }, { "name": "Power BI", "category": "Analytics", "description": "Business analytics service by Microsoft", "pricing_min": 10, "pricing_max": 20, "pricing_unit": "user/month", "features": ["Data Visualization", "Dashboards", "AI Insights", "Real-time Analytics", "Collaboration"], "users": "5M+", "rating": 4.4, "negotiable": False, "g2_score": 4.4, "integrations": ["Azure", "Excel", "SQL Server", "Dynamics 365"], "compliance": ["SOC2", "GDPR", "HIPAA", "ISO27001"] }, { "name": "Looker", "category": "Analytics", "description": "Enterprise platform for business intelligence", "pricing_min": 5000, "pricing_max": 10000, "pricing_unit": "month", "features": ["Data Modeling", "Embedded Analytics", "Real-time Dashboards", "API", "LookML"], "users": "2K+ companies", "rating": 4.5, "negotiable": True, "g2_score": 4.4, "integrations": ["BigQuery", "Snowflake", "Redshift", "Slack"], "compliance": ["SOC2", "GDPR", "HIPAA"] }, { "name": "1Password", "category": "Security", "description": "Password manager for individuals and businesses", "pricing_min": 2.99, "pricing_max": 7.99, "pricing_unit": "user/month", "features": ["Password Vault", "2FA", "Secure Sharing", "Travel Mode", "Watchtower"], "users": "150K+ companies", "rating": 4.7, "negotiable": False, "g2_score": 4.7, "integrations": ["Okta", "Azure AD", "Slack", "GitHub"], "compliance": ["SOC2", "GDPR"] }, { "name": "LastPass", "category": "Security", "description": "Password management and single sign-on", "pricing_min": 4, "pricing_max": 9, "pricing_unit": "user/month", "features": ["Password Vault", "Auto-fill", "Password Sharing", "MFA", "Security Dashboard"], "users": "33M+", "rating": 4.4, "negotiable": False, "g2_score": 4.4, "integrations": ["Okta", "Azure AD", "G Suite", "Salesforce"], "compliance": ["SOC2", "GDPR"] }, { "name": "Okta", "category": "Security", "description": "Identity and access management platform", "pricing_min": 2, "pricing_max": 15, "pricing_unit": "user/month", "features": ["SSO", "MFA", "Lifecycle Management", "API Access Management", "Adaptive MFA"], "users": "18K+ companies", "rating": 4.4, "negotiable": True, "g2_score": 4.4, "integrations": ["Salesforce", "Office 365", "Google Workspace", "AWS"], "compliance": ["SOC2", "GDPR", "HIPAA", "ISO27001"] }, { "name": "CrowdStrike", "category": "Security", "description": "Cloud-native endpoint protection platform", "pricing_min": 8.99, "pricing_max": 22.99, "pricing_unit": "user/month", "features": ["Endpoint Protection", "Threat Intelligence", "EDR", "Managed Hunting", "Cloud Security"], "users": "24K+ companies", "rating": 4.6, "negotiable": True, "g2_score": 4.6, "integrations": ["ServiceNow", "Splunk", "Palo Alto", "AWS"], "compliance": ["SOC2", "GDPR", "HIPAA", "ISO27001"] }, { "name": "Shopify", "category": "E-commerce", "description": "E-commerce platform for online stores", "pricing_min": 39, "pricing_max": 399, "pricing_unit": "month", "features": ["Online Store", "POS", "Marketing", "Payments", "Analytics"], "users": "4M+ merchants", "rating": 4.4, "negotiable": False, "g2_score": 4.4, "integrations": ["Facebook", "Instagram", "Amazon", "eBay"], "compliance": ["PCI DSS", "GDPR", "SOC2"] }, { "name": "WooCommerce", "category": "E-commerce", "description": "Open-source e-commerce plugin for WordPress", "pricing_min": 0, "pricing_max": 0, "pricing_unit": "free", "features": ["Product Management", "Payment Gateways", "Shipping", "Extensions", "Analytics"], "users": "5M+ sites", "rating": 4.1, "negotiable": False, "g2_score": 4.1, "integrations": ["Stripe", "PayPal", "Mailchimp", "Google Analytics"], "compliance": ["PCI DSS", "GDPR"] }, { "name": "Stripe", "category": "Payment Processing", "description": "Online payment processing platform", "pricing_min": 2.9, "pricing_max": 2.9, "pricing_unit": "% per transaction", "features": ["Payment Processing", "Subscriptions", "Invoicing", "Fraud Prevention", "Global Payments"], "users": "4M+ businesses", "rating": 4.6, "negotiable": False, "g2_score": 4.4, "integrations": ["Shopify", "WooCommerce", "Salesforce", "QuickBooks"], "compliance": ["PCI DSS", "SOC2", "GDPR"] }, { "name": "Square", "category": "Payment Processing", "description": "Payment processing and POS system", "pricing_min": 2.6, "pricing_max": 2.9, "pricing_unit": "% per transaction", "features": ["Payment Processing", "POS", "Invoicing", "Payroll", "E-commerce"], "users": "2M+ businesses", "rating": 4.6, "negotiable": False, "g2_score": 4.6, "integrations": ["QuickBooks", "WooCommerce", "BigCommerce", "Wix"], "compliance": ["PCI DSS", "SOC2", "GDPR"] }, { "name": "DocuSign", "category": "Document Management", "description": "Electronic signature and contract management", "pricing_min": 10, "pricing_max": 40, "pricing_unit": "user/month", "features": ["E-signatures", "Contract Management", "Workflow Automation", "Mobile", "Analytics"], "users": "1M+ companies", "rating": 4.5, "negotiable": True, "g2_score": 4.5, "integrations": ["Salesforce", "Microsoft Office", "Google Drive", "Dropbox"], "compliance": ["SOC2", "GDPR", "HIPAA", "ISO27001"] }, { "name": "Confluence", "category": "Knowledge Management", "description": "Team collaboration and documentation platform", "pricing_min": 0, "pricing_max": 10.50, "pricing_unit": "user/month", "features": ["Wikis", "Documentation", "Templates", "Collaboration", "Integration"], "users": "60K+ companies", "rating": 4.1, "negotiable": False, "g2_score": 4.1, "integrations": ["Jira", "Slack", "Microsoft Teams", "Google Drive"], "compliance": ["SOC2", "GDPR", "ISO27001"] }, { "name": "Trello", "category": "Project Management", "description": "Visual collaboration tool for organizing work", "pricing_min": 0, "pricing_max": 17.50, "pricing_unit": "user/month", "features": ["Boards", "Cards", "Power-Ups", "Automation", "Templates"], "users": "50M+", "rating": 4.4, "negotiable": False, "g2_score": 4.3, "integrations": ["Slack", "Google Drive", "Jira", "GitHub"], "compliance": ["SOC2", "GDPR"] }, { "name": "ClickUp", "category": "Project Management", "description": "All-in-one productivity platform", "pricing_min": 0, "pricing_max": 19, "pricing_unit": "user/month", "features": ["Task Management", "Docs", "Goals", "Time Tracking", "Dashboards"], "users": "10M+", "rating": 4.7, "negotiable": False, "g2_score": 4.7, "integrations": ["Slack", "Google Drive", "Zoom", "GitHub"], "compliance": ["SOC2", "GDPR"] }, { "name": "HubSpot CRM", "category": "CRM", "description": "Free CRM with sales and marketing tools", "pricing_min": 0, "pricing_max": 1200, "pricing_unit": "month", "features": ["Contact Management", "Email Tracking", "Pipeline Management", "Reporting", "Mobile App"], "users": "228K+ companies", "rating": 4.4, "negotiable": True, "g2_score": 4.4, "integrations": ["Gmail", "Outlook", "Slack", "Zoom"], "compliance": ["SOC2", "GDPR", "HIPAA"] }, { "name": "Pipedrive", "category": "CRM", "description": "Sales-focused CRM platform", "pricing_min": 14, "pricing_max": 99, "pricing_unit": "user/month", "features": ["Pipeline Management", "Lead Generation", "Email Integration", "Automation", "Reporting"], "users": "100K+ companies", "rating": 4.3, "negotiable": True, "g2_score": 4.2, "integrations": ["Gmail", "Slack", "Mailchimp", "Zapier"], "compliance": ["SOC2", "GDPR"] }, { "name": "Airtable", "category": "Database", "description": "Low-code platform for building collaborative apps", "pricing_min": 0, "pricing_max": 24, "pricing_unit": "user/month", "features": ["Custom Apps", "Database", "Automation", "Integrations", "Views"], "users": "300K+ organizations", "rating": 4.6, "negotiable": False, "g2_score": 4.6, "integrations": ["Slack", "Google Drive", "Salesforce", "Jira"], "compliance": ["SOC2", "GDPR"] }, { "name": "Miro", "category": "Collaboration", "description": "Online collaborative whiteboard platform", "pricing_min": 0, "pricing_max": 16, "pricing_unit": "user/month", "features": ["Whiteboarding", "Templates", "Video Chat", "Integrations", "Workshops"], "users": "60M+", "rating": 4.8, "negotiable": False, "g2_score": 4.8, "integrations": ["Zoom", "Microsoft Teams", "Slack", "Jira"], "compliance": ["SOC2", "GDPR"] }, { "name": "Canva", "category": "Design Tools", "description": "Graphic design platform for all skill levels", "pricing_min": 0, "pricing_max": 15, "pricing_unit": "user/month", "features": ["Templates", "Drag-and-Drop Editor", "Brand Kit", "Collaboration", "Stock Library"], "users": "170M+", "rating": 4.7, "negotiable": False, "g2_score": 4.7, "integrations": ["Dropbox", "Google Drive", "Slack", "Mailchimp"], "compliance": ["SOC2", "GDPR"] }, { "name": "Loom", "category": "Video Communication", "description": "Video messaging for work", "pricing_min": 0, "pricing_max": 12.50, "pricing_unit": "user/month", "features": ["Screen Recording", "Video Messaging", "Transcriptions", "Analytics", "Integrations"], "users": "25M+", "rating": 4.7, "negotiable": False, "g2_score": 4.7, "integrations": ["Slack", "Gmail", "Notion", "Jira"], "compliance": ["SOC2", "GDPR"] }, { "name": "Calendly", "category": "Scheduling", "description": "Scheduling automation platform", "pricing_min": 0, "pricing_max": 16, "pricing_unit": "user/month", "features": ["Automated Scheduling", "Calendar Integration", "Meeting Types", "Reminders", "Analytics"], "users": "20M+", "rating": 4.7, "negotiable": False, "g2_score": 4.7, "integrations": ["Zoom", "Google Calendar", "Salesforce", "HubSpot"], "compliance": ["SOC2", "GDPR"] }, { "name": "Zapier", "category": "Automation", "description": "Workflow automation platform", "pricing_min": 0, "pricing_max": 69, "pricing_unit": "month", "features": ["App Integration", "Multi-Step Workflows", "Filters", "Formatters", "Webhooks"], "users": "2M+", "rating": 4.5, "negotiable": False, "g2_score": 4.5, "integrations": ["5000+ apps"], "compliance": ["SOC2", "GDPR"] }, { "name": "Box", "category": "Cloud Storage", "description": "Cloud content management and collaboration", "pricing_min": 5, "pricing_max": 35, "pricing_unit": "user/month", "features": ["File Storage", "Collaboration", "Security", "Workflow Automation", "E-signatures"], "users": "100K+ companies", "rating": 4.2, "negotiable": True, "g2_score": 4.2, "integrations": ["Microsoft Office", "Google Workspace", "Slack", "Salesforce"], "compliance": ["SOC2", "GDPR", "HIPAA", "ISO27001"] }, { "name": "Smartsheet", "category": "Project Management", "description": "Work execution platform for enterprises", "pricing_min": 7, "pricing_max": 25, "pricing_unit": "user/month", "features": ["Grid", "Gantt", "Card View", "Automation", "Dashboards"], "users": "90% Fortune 100", "rating": 4.4, "negotiable": True, "g2_score": 4.4, "integrations": ["Salesforce", "Jira", "Slack", "Microsoft Teams"], "compliance": ["SOC2", "GDPR", "HIPAA", "ISO27001"] }, { "name": "Datadog", "category": "Monitoring", "description": "Cloud monitoring and security platform", "pricing_min": 15, "pricing_max": 31, "pricing_unit": "host/month", "features": ["Infrastructure Monitoring", "APM", "Log Management", "Security Monitoring", "Synthetics"], "users": "27K+ companies", "rating": 4.3, "negotiable": True, "g2_score": 4.3, "integrations": ["AWS", "Azure", "GCP", "Kubernetes"], "compliance": ["SOC2", "GDPR", "HIPAA", "ISO27001"] } ] # Initialize database if not st.session_state.software_database: st.session_state.software_database = SOFTWARE_DATABASE def call_openai(prompt, system_prompt="You are an expert software procurement consultant."): try: client = OpenAI(api_key=os.getenv("OPENAI_API_KEY")) completion = client.chat.completions.create( model="gpt-4o-mini", # or "gpt-4o" if you have access messages=[ {"role": "system", "content": system_prompt}, {"role": "user", "content": prompt} ], temperature=0.7, max_tokens=1000 ) return completion.choices[0].message.content except Exception as e: return f"❌ OpenAI API Error: {e}" # Sidebar with st.sidebar: st.markdown("---") st.markdown("### πŸ“Š Quick Stats") if st.session_state.compare_list: st.metric("Selected for Comparison", len(st.session_state.compare_list)) st.metric("Total Software", len(st.session_state.software_database)) st.markdown("---") st.markdown("### 🎯 Navigation") page = st.radio("Go to:", [ "🏠 Home", "πŸ” AI Matching Engine", "πŸ“Š Compare Software", "πŸ’‘ Strategy Optimizer", "🀝 Negotiation Assistant", "πŸ“ˆ Usage Analytics" ]) # Main content if page == "🏠 Home": st.markdown('

🎯 Softwares

', unsafe_allow_html=True) st.markdown("### Intelligent Software Procurement & Negotiation Platform") col1, col2, col3 = st.columns(3) with col1: st.info("**🎯 AI Matching**\n\nIntelligent software recommendations based on your needs") with col2: st.info("**πŸ“Š Smart Comparison**\n\nMulti-dimensional analysis of features, pricing & TCO") with col3: st.info("**🀝 Negotiation AI**\n\nGet the best deals with data-driven negotiation strategies") st.markdown("---") st.markdown("## πŸš€ Quick Start") col1, col2 = st.columns(2) with col1: st.markdown("### 1️⃣ Tell Us Your Needs") company_size = st.selectbox("Company Size", ["1-10", "11-50", "51-200", "201-1000", "1000+"]) industry = st.selectbox("Industry", ["Technology", "Healthcare", "Finance", "Education", "Retail", "Other"]) budget = st.selectbox("Monthly Budget", ["<$1K", "$1K-$5K", "$5K-$20K", "$20K-$50K", "$50K+"]) if st.button("🎯 Get AI Recommendations", type="primary"): with st.spinner("Analyzing your requirements..."): prompt = f""" You are an expert enterprise software consultant. Based on the following company profile, recommend the top 5 software tools or vendor bundles that best fit their needs. Company Profile: - Company Size: {company_size} employees - Industry: {industry} - Monthly Budget: {budget} Available software database: {json.dumps([ {"name": s["name"], "category": s["category"], "pricing": f"${s['pricing_min']}-{s['pricing_max']}/{s['pricing_unit']}"} for s in SOFTWARE_DATABASE ], indent=2)} Please perform a holistic evaluation, considering: 1. **Functional Coverage Efficiency** β€” Prefer software that covers multiple business needs (reduce overlap). 2. **Vendor Consolidation** β€” Recommend single-vendor bundles when one company provides multiple complementary tools. 3. **Cost Efficiency** β€” Stay within the monthly budget and note potential savings from reduced redundancy. 4. **Integration Simplicity** β€” Fewer vendors β†’ lower integration and training overhead. 5. **Scalability and Fit** β€” Match features and complexity to company size and industry-specific workflows. Note that the overlap issue should be taken into account. It is necessary to consider the situation where many functions can be accomplished by purchasing lisence from just one company Provide recommendations with reasoning for each. """ response = call_openai(prompt) st.success("βœ… Recommendations Generated!") st.markdown(response) with col2: st.markdown("### 2️⃣ Browse Software Catalog") categories = ["All"] + list(set([s["category"] for s in SOFTWARE_DATABASE])) selected_category = st.selectbox("Category", categories) filtered_software = SOFTWARE_DATABASE if selected_category == "All" else [s for s in SOFTWARE_DATABASE if s["category"] == selected_category] st.markdown(f"**{len(filtered_software)} software found**") for software in filtered_software[:5]: with st.expander(f"**{software['name']}** - {software['category']} ⭐ {software['rating']}"): st.markdown(f"*{software['description']}*") st.markdown(f"**πŸ’° Pricing:** ${software['pricing_min']}-${software['pricing_max']}/{software['pricing_unit']}") st.markdown(f"**πŸ‘₯ Users:** {software['users']}") if st.button(f"Add to Compare", key=f"home_compare_{software['name']}"): if software not in st.session_state.compare_list: st.session_state.compare_list.append(software) st.success(f"Added {software['name']} to comparison!") else: st.warning("Already in comparison list") elif page == "πŸ” AI Matching Engine": st.markdown('

🎯 AI Software Matching Engine

', unsafe_allow_html=True) st.markdown("### Let AI help you find the perfect software for your needs") tab1, tab2 = st.tabs(["πŸ’¬ Conversational Analysis", "πŸ“‹ Questionnaire"]) with tab1: st.markdown("#### Chat with our AI to discover your perfect software match") # Chat interface for msg in st.session_state.chat_history: with st.chat_message(msg["role"]): st.markdown(msg["content"]) user_input = st.chat_input("Describe your software needs...") if user_input: st.session_state.chat_history.append({"role": "user", "content": user_input}) with st.chat_message("user"): st.markdown(user_input) with st.chat_message("assistant"): with st.spinner("Analyzing..."): system_prompt = """You are an expert software procurement consultant. Help users find the best software solutions. Ask clarifying questions about: - Company size and structure - Industry and use cases - Budget constraints - Current software stack - Integration requirements - Compliance needs Be conversational and helpful. After gathering enough information, recommend specific software from the database.""" context = f""" Chat history: {json.dumps(st.session_state.chat_history[-5:])} Available software: {json.dumps([{"name": s["name"], "category": s["category"], "features": s["features"][:3]} for s in SOFTWARE_DATABASE], indent=2)} User message: {user_input} """ response = call_openai(context, system_prompt) st.markdown(response) st.session_state.chat_history.append({"role": "assistant", "content": response}) with tab2: st.markdown("#### Complete this questionnaire for precise recommendations") with st.form("requirements_form"): col1, col2 = st.columns(2) with col1: team_size = st.number_input("Team Size", min_value=1, value=10) industry = st.selectbox("Industry", ["Technology", "Healthcare", "Finance", "Education", "Retail", "Manufacturing", "Other"]) remote_work = st.selectbox("Work Model", ["Fully Remote", "Hybrid", "In-Office"]) budget_range = st.selectbox("Monthly Budget per User", ["<$10", "$10-$30", "$30-$50", "$50-$100", "$100+"]) with col2: needs = st.multiselect("Primary Needs", [ "Team Communication", "Video Conferencing", "Project Management", "File Storage", "CRM", "Email", "Design Tools", "Developer Tools", "Knowledge Management", "Time Tracking" ]) integrations = st.multiselect("Must Integrate With", [ "Slack", "Microsoft Teams", "Google Workspace", "Salesforce", "Jira", "GitHub", "Zoom" ]) compliance = st.multiselect("Compliance Requirements", [ "GDPR", "HIPAA", "SOC2", "ISO27001" ]) submitted = st.form_submit_button("🎯 Get AI Recommendations", type="primary") if submitted: with st.spinner("Analyzing your requirements with AI..."): prompt = f"""Analyze these requirements and recommend the best software solutions: Company Profile: - Team Size: {team_size} people - Industry: {industry} - Work Model: {remote_work} - Budget per User: {budget_range} Requirements: - Primary Needs: {', '.join(needs)} - Required Integrations: {', '.join(integrations)} - Compliance: {', '.join(compliance)} Available software database: {json.dumps(SOFTWARE_DATABASE, indent=2)} Provide: 1. Top 5 recommended software with match scores 2. Functional gap analysis 3. Estimated total cost 4. Integration compatibility 5. Compliance coverage """ response = call_openai(prompt) st.success("βœ… Analysis Complete!") st.markdown("### 🎯 AI Recommendations") st.markdown(response) # Extract recommended software st.markdown("---") st.markdown("### πŸ“Š Quick Compare Recommended Software") cols = st.columns(3) for idx, software in enumerate(SOFTWARE_DATABASE[:3]): with cols[idx]: st.markdown(f"**{software['name']}**") st.markdown(f"⭐ {software['rating']}") st.markdown(f"πŸ’° ${software['pricing_min']}-${software['pricing_max']}") if st.button(f"Add to Compare", key=f"rec_{software['name']}"): if software not in st.session_state.compare_list: st.session_state.compare_list.append(software) st.success(f"Added!") elif page == "πŸ“Š Compare Software": st.markdown('

πŸ“Š Multi-Dimensional Comparison

', unsafe_allow_html=True) col1, col2 = st.columns([3, 1]) with col1: st.markdown(f"### Compare up to 4 software solutions") with col2: if st.button("πŸ—‘οΈ Clear All"): st.session_state.compare_list = [] st.rerun() # Software selector st.markdown("#### Add Software to Compare") col1, col2, col3 = st.columns(3) with col1: selected_software = st.selectbox( "Select Software", [s["name"] for s in SOFTWARE_DATABASE if s not in st.session_state.compare_list], key="software_selector" ) with col2: if st.button("βž• Add to Comparison", type="primary"): software = next(s for s in SOFTWARE_DATABASE if s["name"] == selected_software) if len(st.session_state.compare_list) < 4: st.session_state.compare_list.append(software) st.success(f"Added {selected_software}!") st.rerun() else: st.error("Maximum 4 software can be compared") if len(st.session_state.compare_list) == 0: st.info("πŸ‘† Add software to start comparing") else: st.markdown(f"**{len(st.session_state.compare_list)} software selected**") # Display comparison cards cols = st.columns(len(st.session_state.compare_list)) for idx, software in enumerate(st.session_state.compare_list): with cols[idx]: st.markdown(f"""

{software['name']}

{software['category']}

""", unsafe_allow_html=True) st.markdown(f"⭐ **Rating:** {software['rating']}/5.0") if st.button("Remove", key=f"remove_{idx}"): st.session_state.compare_list.pop(idx) st.rerun() st.markdown("---") # Comparison tabs tab1, tab2, tab3, tab4, tab5 = st.tabs([ "πŸ’° Pricing", "✨ Features", "πŸ”— Integrations", "πŸ“Š TCO Analysis", "πŸ€– AI Insights" ]) with tab1: st.markdown("### πŸ’° Pricing Structure Comparison") # Pricing comparison table pricing_data = [] for software in st.session_state.compare_list: pricing_data.append({ "Software": software["name"], "Min Price": f"${software['pricing_min']}", "Max Price": f"${software['pricing_max']}", "Unit": software["pricing_unit"], "Negotiable": "βœ…" if software["negotiable"] else "❌" }) df_pricing = pd.DataFrame(pricing_data) st.dataframe(df_pricing, use_container_width=True) # Pricing chart st.markdown("#### Price Range Comparison") fig = go.Figure() for software in st.session_state.compare_list: fig.add_trace(go.Bar( name=software["name"], x=["Min Price", "Max Price"], y=[software["pricing_min"], software["pricing_max"]], )) fig.update_layout(barmode='group', height=400) st.plotly_chart(fig, use_container_width=True) # TCO Calculator st.markdown("#### πŸ’΅ Total Cost of Ownership Calculator") num_users = st.slider("Number of Users", 1, 500, 50) contract_length = st.selectbox("Contract Length", ["Monthly", "Annual", "Multi-year"]) st.markdown("**Estimated Annual Cost:**") for software in st.session_state.compare_list: avg_price = (software["pricing_min"] + software["pricing_max"]) / 2 annual_cost = avg_price * num_users * 12 discount = 0.15 if software["negotiable"] else 0 final_cost = annual_cost * (1 - discount) st.metric( software["name"], f"${final_cost:,.0f}/year", f"-${annual_cost * discount:,.0f} (negotiable)" if discount > 0 else "Fixed pricing" ) with tab2: st.markdown("### ✨ Feature Matrix Comparison") all_features = set() for software in st.session_state.compare_list: all_features.update(software["features"]) feature_matrix = [] for feature in sorted(all_features): row = {"Feature": feature} for software in st.session_state.compare_list: row[software["name"]] = "βœ…" if feature in software["features"] else "❌" feature_matrix.append(row) df_features = pd.DataFrame(feature_matrix) st.dataframe(df_features, use_container_width=True, height=400) # Feature coverage chart st.markdown("#### Feature Coverage Score") coverage_data = [] for software in st.session_state.compare_list: coverage = (len(software["features"]) / len(all_features)) * 100 coverage_data.append({"Software": software["name"], "Coverage": coverage}) df_coverage = pd.DataFrame(coverage_data) fig = px.bar(df_coverage, x="Software", y="Coverage", title="Feature Coverage (%)", color="Coverage", color_continuous_scale="Blues") st.plotly_chart(fig, use_container_width=True) with tab3: st.markdown("### πŸ”— Integration Compatibility") all_integrations = set() for software in st.session_state.compare_list: all_integrations.update(software["integrations"]) integration_matrix = [] for integration in sorted(all_integrations): row = {"Integration": integration} for software in st.session_state.compare_list: row[software["name"]] = "βœ…" if integration in software["integrations"] else "❌" integration_matrix.append(row) df_integrations = pd.DataFrame(integration_matrix) st.dataframe(df_integrations, use_container_width=True) # Compliance comparison st.markdown("#### πŸ›‘οΈ Compliance & Security") compliance_matrix = [] all_compliance = set() for software in st.session_state.compare_list: all_compliance.update(software["compliance"]) for comp in sorted(all_compliance): row = {"Certification": comp} for software in st.session_state.compare_list: row[software["name"]] = "βœ…" if comp in software["compliance"] else "❌" compliance_matrix.append(row) df_compliance = pd.DataFrame(compliance_matrix) st.dataframe(df_compliance, use_container_width=True) with tab4: st.markdown("### πŸ“Š Total Cost of Ownership (TCO) Analysis") st.markdown("#### Configure Your Scenario") col1, col2, col3 = st.columns(3) with col1: num_users_tco = st.number_input("Number of Users", 1, 1000, 50, key="tco_users") with col2: years = st.selectbox("Time Period", [1, 2, 3, 5], key="tco_years") with col3: include_costs = st.multiselect("Include", ["Training", "Migration", "Support"], default=["Training"]) tco_data = [] for software in st.session_state.compare_list: avg_price = (software["pricing_min"] + software["pricing_max"]) / 2 subscription_cost = avg_price * num_users_tco * 12 * years training_cost = 100 * num_users_tco if "Training" in include_costs else 0 migration_cost = 5000 if "Migration" in include_costs else 0 support_cost = subscription_cost * 0.1 * years if "Support" in include_costs else 0 total_tco = subscription_cost + training_cost + migration_cost + support_cost tco_data.append({ "Software": software["name"], "Subscription": subscription_cost, "Training": training_cost, "Migration": migration_cost, "Support": support_cost, "Total TCO": total_tco }) df_tco = pd.DataFrame(tco_data) # TCO breakdown chart fig = go.Figure() for cost_type in ["Subscription", "Training", "Migration", "Support"]: fig.add_trace(go.Bar( name=cost_type, x=df_tco["Software"], y=df_tco[cost_type] )) fig.update_layout(barmode='stack', title="TCO Breakdown", height=400) st.plotly_chart(fig, use_container_width=True) # TCO table st.markdown("#### Detailed TCO Breakdown") st.dataframe(df_tco.style.format({ "Subscription": "${:,.0f}", "Training": "${:,.0f}", "Migration": "${:,.0f}", "Support": "${:,.0f}", "Total TCO": "${:,.0f}" }), use_container_width=True) with tab5: st.markdown("### πŸ€– AI-Powered Insights") if st.button("🧠 Generate AI Analysis", type="primary"): with st.spinner("AI is analyzing your comparison..."): prompt = f"""Analyze this software comparison and provide insights: Software being compared: {json.dumps(st.session_state.compare_list, indent=2)} Provide: 1. **Best Overall Value**: Which offers the best balance of features and price? 2. **Best for Specific Use Cases**: Recommend which software for different scenarios 3. **Cost Optimization**: How to reduce costs while maintaining functionality 4. **Integration Strategy**: Which combination works best together 5. **Risk Assessment**: Potential issues or limitations 6. **Negotiation Opportunities**: Which vendors are most likely to offer discounts Be specific and actionable.""" response = call_openai(prompt) st.markdown(response) st.markdown("---") st.markdown("#### πŸ“ˆ Quick Recommendation Matrix") cols = st.columns(len(st.session_state.compare_list)) for idx, software in enumerate(st.session_state.compare_list): with cols[idx]: st.markdown(f"**{software['name']}**") # Calculate scores price_score = 5.0 - (software["pricing_max"] / 50) # Simple price score feature_score = min(5.0, len(software["features"]) / 2) integration_score = min(5.0, len(software["integrations"])) st.metric("Price Score", f"{max(1, price_score):.1f}/5") st.metric("Feature Score", f"{feature_score:.1f}/5") st.metric("Integration", f"{integration_score:.1f}/5") elif page == "πŸ’‘ Strategy Optimizer": st.markdown('

πŸ’‘ Strategy Combination Optimizer

', unsafe_allow_html=True) st.markdown("### Find the optimal software stack for your organization") # Input parameters st.markdown("#### 🎯 Your Requirements") col1, col2, col3 = st.columns(3) with col1: team_size = st.number_input("Team Size", 1, 1000, 50) with col2: monthly_budget = st.number_input("Monthly Budget ($)", 100, 100000, 5000) with col3: optimization_goal = st.selectbox("Optimization Goal", [ "Minimize Cost", "Maximize Features", "Best Integration", "Balanced Approach" ]) required_categories = st.multiselect("Required Software Categories", [ "Team Communication", "Video Conferencing", "Project Management", "Email & Productivity", "CRM", "Cloud Storage", "Developer Tools", "Design Tools", "Knowledge Management" ]) st.markdown("#### 🧩 Current Software Situation (optional)") current_stack = st.text_area( "Describe what your organization already uses (e.g., 'We already have 5 Zoom licenses and a free Teams plan').", placeholder="e.g., We already have 5 Zoom licenses and use Notion for documentation." ) if st.button("πŸš€ Generate Optimization Strategies", type="primary"): with st.spinner("AI is optimizing your software stack..."): prompt = f"""Create 3 optimal software stack strategies based on these requirements: Requirements: - Team Size: {team_size} people - Monthly Budget: ${monthly_budget} - Optimization Goal: {optimization_goal} - Required Categories: {', '.join(required_categories)} Current Software Stack: {current_stack if current_stack.strip() else "No existing software mentioned"} Available Software: {json.dumps(SOFTWARE_DATABASE, indent=2)} Generate 3 strategies: 1. **All-in-One Solution**: Using comprehensive platforms (Microsoft 365, Google Workspace, etc.) 2. **Best-of-Breed Combination**: Mix of specialized best-in-class tools 3. **Budget-Optimized Hybrid**: Balance between functionality and cost For each strategy provide: - Recommended software list - Total monthly cost - Feature coverage percentage - Integration difficulty score (1-10) - Pros and cons - Learning curve assessment - ROI timeline """ response = call_openai(prompt) st.success("βœ… Strategies Generated!") st.markdown(response) # Visual comparison st.markdown("---") st.markdown("### πŸ“Š Strategy Comparison Dashboard") # Mock data for visualization strategies = { "All-in-One": {"cost": monthly_budget * 0.8, "features": 85, "integration": 9, "learning": 6}, "Best-of-Breed": {"cost": monthly_budget * 1.1, "features": 95, "integration": 6, "learning": 7}, "Budget-Optimized": {"cost": monthly_budget * 0.6, "features": 75, "integration": 7, "learning": 5} } col1, col2, col3 = st.columns(3) for idx, (strategy_name, metrics) in enumerate(strategies.items()): with [col1, col2, col3][idx]: st.markdown(f"""

{strategy_name}

Strategy {idx + 1}

""", unsafe_allow_html=True) st.metric("Monthly Cost", f"${metrics['cost']:.0f}") st.metric("Feature Coverage", f"{metrics['features']}%") st.metric("Integration Score", f"{metrics['integration']}/10") st.metric("Learning Curve", f"{metrics['learning']}/10") st.button(f"Select {strategy_name}", key=f"select_{strategy_name}") # Comparison radar chart st.markdown("#### πŸ“ˆ Multi-Dimensional Comparison") fig = go.Figure() for strategy_name, metrics in strategies.items(): fig.add_trace(go.Scatterpolar( r=[ (monthly_budget - metrics['cost']) / monthly_budget * 100, # Cost efficiency metrics['features'], metrics['integration'] * 10, (10 - metrics['learning']) * 10, # Ease of learning (inverted) ], theta=['Cost Efficiency', 'Features', 'Integration', 'Ease of Use'], fill='toself', name=strategy_name )) fig.update_layout( polar=dict(radialaxis=dict(visible=True, range=[0, 100])), showlegend=True, height=500 ) st.plotly_chart(fig, use_container_width=True) elif page == "🀝 Negotiation Assistant": st.markdown('

🀝 AI Negotiation Assistant

', unsafe_allow_html=True) st.markdown("### Get the best deals with data-driven negotiation strategies") tab1, tab2, tab3, tab4 = st.tabs([ "πŸ“Š Market Benchmarks", "πŸ’¬ Script Generator", "πŸ“… Best Timing", "πŸ“„ Contract Analysis" ]) with tab1: st.markdown("### πŸ“Š Market Price Benchmarks") col1, col2 = st.columns([1, 2]) with col1: selected_software_nego = st.selectbox( "Select Software", [s["name"] for s in SOFTWARE_DATABASE] ) company_size_nego = st.selectbox("Company Size", ["1-10", "11-50", "51-200", "201-1000", "1000+"]) contract_term = st.selectbox("Contract Term", ["Monthly", "1 Year", "2 Years", "3 Years"]) with col2: software_nego = next(s for s in SOFTWARE_DATABASE if s["name"] == selected_software_nego) st.markdown(f"#### {software_nego['name']} Pricing Intelligence") col1, col2, col3 = st.columns(3) with col1: st.metric("List Price", f"${software_nego['pricing_max']}/user/mo") with col2: discount = 0.15 if software_nego["negotiable"] else 0 st.metric("Typical Discount", f"{discount*100:.0f}%", "Negotiable" if software_nego["negotiable"] else "Fixed") with col3: negotiated_price = software_nego['pricing_max'] * (1 - discount) st.metric("Target Price", f"${negotiated_price:.2f}/user/mo") # Benchmark chart st.markdown("#### πŸ’° Price by Company Size") benchmark_data = pd.DataFrame({ 'Company Size': ['1-10', '11-50', '51-200', '201-1000', '1000+'], 'Average Price': [ software_nego['pricing_max'], software_nego['pricing_max'] * 0.95, software_nego['pricing_max'] * 0.90, software_nego['pricing_max'] * 0.85, software_nego['pricing_max'] * 0.75 ], 'Discount %': [0, 5, 10, 15, 25] }) fig = px.bar(benchmark_data, x='Company Size', y='Average Price', title='Average Negotiated Price by Company Size', color='Discount %', color_continuous_scale='RdYlGn') st.plotly_chart(fig, use_container_width=True) # Similar companies data st.markdown("#### 🏒 Similar Companies Paid") similar_companies = pd.DataFrame({ 'Company': [f'Company {i}' for i in range(1, 6)], 'Size': ['45', '52', '48', '55', '50'], 'Industry': ['Tech', 'Finance', 'Healthcare', 'Tech', 'Education'], 'Price/User': [f'${software_nego["pricing_max"] * (0.85 + i*0.02):.2f}' for i in range(5)], 'Contract': ['2 Year', '1 Year', '3 Year', '2 Year', '1 Year'] }) st.dataframe(similar_companies, use_container_width=True) with tab2: st.markdown("### πŸ’¬ AI Negotiation Script Generator") st.markdown("#### Your Negotiation Context") col1, col2 = st.columns(2) with col1: nego_software = st.selectbox("Software to Negotiate", [s["name"] for s in SOFTWARE_DATABASE], key="script_software") num_licenses = st.number_input("Number of Licenses", 1, 1000, 50, key="script_licenses") current_price = st.number_input("Current Quote (per user/month)", 0.0, 1000.0, 20.0, key="script_price") with col2: contract_length_nego = st.selectbox("Proposed Contract Length", ["1 Year", "2 Years", "3 Years"], key="script_contract") leverage_points = st.multiselect("Your Leverage", [ "Multiple vendors being evaluated", "Existing customer", "Large team size", "Multi-year commitment", "Competitor offers better price", "Budget constraints", "Referral potential" ]) negotiation_style = st.selectbox("Negotiation Style", ["Professional", "Friendly", "Assertive"]) if st.button("🎯 Generate Negotiation Script", type="primary"): with st.spinner("Crafting your personalized negotiation strategy..."): prompt = f"""Create a detailed negotiation script for: Context: - Software: {nego_software} - Number of Licenses: {num_licenses} - Current Quote: ${current_price}/user/month - Desired Contract: {contract_length_nego} - Leverage Points: {', '.join(leverage_points)} - Style: {negotiation_style} Generate: 1. **Email Template**: Initial negotiation email 2. **Call Script**: Talking points for sales call 3. **Counter-Offer Strategy**: Specific discount requests with justification 4. **Fallback Positions**: Alternative asks if primary request is denied 5. **Closing Tactics**: How to finalize the deal 6. **Common Objections & Responses**: How to handle pushback Make it professional, specific, and actionable. Include actual price points and percentages.""" response = call_openai(prompt, system_prompt="You are an expert B2B software negotiation consultant with 20 years of experience.") st.success("βœ… Negotiation Script Generated!") st.markdown(response) # Download button st.download_button( label="πŸ“₯ Download Script", data=response, file_name=f"negotiation_script_{nego_software}.txt", mime="text/plain" ) with tab3: st.markdown("### πŸ“… Best Time to Purchase") col1, col2 = st.columns(2) with col1: st.markdown("#### πŸ—“οΈ Optimal Purchase Timing") timing_data = pd.DataFrame({ 'Period': ['Q1', 'Q2', 'Q3', 'Q4'], 'Discount Potential': [15, 10, 12, 25], 'Sales Pressure': ['Low', 'Medium', 'Medium', 'Very High'] }) fig = px.bar(timing_data, x='Period', y='Discount Potential', title='Average Discount Potential by Quarter', color='Discount Potential', color_continuous_scale='RdYlGn') st.plotly_chart(fig, use_container_width=True) st.info("**πŸ’‘ Best Time**: End of Q4 (December) when sales teams are closing their year") st.markdown("#### πŸ“† Current Opportunities") current_month = datetime.now().strftime("%B") st.success(f"**Current Month**: {current_month}") if "December" in current_month or "June" in current_month: st.success("πŸŽ‰ **EXCELLENT TIME TO NEGOTIATE!** End of fiscal period for many companies.") elif "September" in current_month or "March" in current_month: st.info("βœ… **GOOD TIME** - End of quarter, moderate pressure on sales teams.") else: st.warning("⏰ Consider waiting until end of quarter for better deals.") with col2: st.markdown("#### 🎯 Timing Strategies") strategies = [ {"strategy": "End of Quarter", "potential": "15-20%", "risk": "Low"}, {"strategy": "End of Fiscal Year", "potential": "20-30%", "risk": "Low"}, {"strategy": "During Product Launch", "potential": "10-15%", "risk": "Medium"}, {"strategy": "Competitor Announcement", "potential": "15-25%", "risk": "Medium"}, {"strategy": "Contract Renewal", "potential": "10-20%", "risk": "Low"} ] for strategy in strategies: with st.expander(f"**{strategy['strategy']}** - {strategy['potential']} discount"): st.markdown(f"**Discount Potential**: {strategy['potential']}") st.markdown(f"**Risk Level**: {strategy['risk']}") st.markdown("#### 🎁 Seasonal Promotions") st.markdown(""" - **Black Friday/Cyber Monday**: Special promotions - **New Year**: Fresh budgets, soft launches - **Summer**: Mid-year deals - **Back to School**: Education-focused promotions """) with tab4: st.markdown("### πŸ“„ AI Contract Analysis") st.markdown("#### Upload or Paste Your Contract") input_method = st.radio("Input Method", ["Paste Text", "Upload File"]) contract_text = "" if input_method == "Paste Text": contract_text = st.text_area("Paste Contract Text", height=200, placeholder="Paste your software contract or terms of service here...") else: uploaded_file = st.file_uploader("Upload Contract (PDF or TXT)", type=["pdf", "txt"]) if uploaded_file: contract_text = uploaded_file.read().decode("utf-8", errors="ignore") st.success("Contract uploaded!") if st.button("πŸ” Analyze Contract", type="primary") and contract_text: with st.spinner("AI is analyzing your contract..."): prompt = f"""Analyze this software contract and identify: Contract Text: {contract_text[:4000]} # Limit for token size Provide detailed analysis: 1. **🚨 Risk Factors**: - Automatic renewal clauses - Price increase rights - Unfavorable termination terms - Data ownership issues - Liability limitations 2. **βœ… Compliance Check**: - GDPR compliance - SOC2/ISO27001 mentions - Data privacy protections - SLA commitments 3. **πŸ’° Financial Terms**: - Payment terms - Refund policy - Price adjustment clauses - Hidden fees 4. **βš–οΈ Legal Concerns**: - Jurisdiction and governing law - Dispute resolution - Indemnification clauses - IP rights 5. **✍️ Recommendations**: - Terms to negotiate - Red flags to address - Missing protections - Overall risk score (1-10) Be specific and highlight exact problematic clauses.""" response = call_openai(prompt, system_prompt="You are an expert software contract attorney specializing in SaaS agreements.") st.success("βœ… Contract Analysis Complete!") # Display in organized sections col1, col2 = st.columns(2) with col1: st.markdown("### 🚨 Risk Assessment") st.error("**High Risk Items Found**") st.markdown(response[:len(response)//2]) with col2: st.markdown("### βœ… Recommendations") st.info("**Action Items**") st.markdown(response[len(response)//2:]) st.download_button( label="πŸ“₯ Download Full Analysis", data=response, file_name="contract_analysis.txt", mime="text/plain" ) elif page == "πŸ“ˆ Usage Analytics": st.markdown('

πŸ“ˆ Usage Monitoring & Optimization

', unsafe_allow_html=True) st.markdown("### Track usage and identify cost-saving opportunities") # Dashboard metrics col1, col2, col3, col4 = st.columns(4) with col1: st.metric("Total Monthly Spend", "$45,000", "-12% vs last month", delta_color="normal") with col2: st.metric("Active Subscriptions", "23", "+2", delta_color="inverse") with col3: st.metric("Unused Licenses", "47", "-5", delta_color="normal") with col4: st.metric("Potential Savings", "$8,400", "+$1,200", delta_color="normal") st.markdown("---") tab1, tab2, tab3, tab4 = st.tabs([ "πŸ“Š Overview", "πŸ’° Cost Analysis", "πŸ‘₯ License Utilization", "🎯 Optimization" ]) with tab1: st.markdown("### πŸ“Š Software Portfolio Overview") # Mock usage data usage_data = [] for software in SOFTWARE_DATABASE[:8]: usage_data.append({ "Software": software["name"], "Licenses": 50, "Active Users": int(50 * (0.6 + 0.3 * (hash(software["name"]) % 10) / 10)), "Monthly Cost": software["pricing_max"] * 50, "Category": software["category"] }) df_usage = pd.DataFrame(usage_data) df_usage["Utilization %"] = (df_usage["Active Users"] / df_usage["Licenses"] * 100).round(1) df_usage["Waste"] = df_usage["Monthly Cost"] * (1 - df_usage["Active Users"] / df_usage["Licenses"]) # Usage chart col1, col2 = st.columns(2) with col1: fig = px.bar(df_usage, x="Software", y="Utilization %", title="License Utilization by Software", color="Utilization %", color_continuous_scale="RdYlGn", range_color=[0, 100]) st.plotly_chart(fig, use_container_width=True) with col2: fig = px.pie(df_usage, values="Monthly Cost", names="Software", title="Cost Distribution") st.plotly_chart(fig, use_container_width=True) # Detailed table st.markdown("#### πŸ“‹ Detailed Usage Report") st.dataframe( df_usage.style.format({ "Monthly Cost": "${:,.0f}", "Waste": "${:,.0f}", "Utilization %": "{:.1f}%" }).background_gradient(subset=["Utilization %"], cmap="RdYlGn", vmin=0, vmax=100), use_container_width=True ) with tab2: st.markdown("### πŸ’° Cost Analysis & Trends") # Monthly spend trend months = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun'] spend_data = pd.DataFrame({ 'Month': months, 'Spend': [42000, 43500, 45000, 46000, 44500, 45000], 'Budget': [50000] * 6 }) fig = go.Figure() fig.add_trace(go.Scatter(x=spend_data['Month'], y=spend_data['Spend'], mode='lines+markers', name='Actual Spend', line=dict(color='#667eea', width=3))) fig.add_trace(go.Scatter(x=spend_data['Month'], y=spend_data['Budget'], mode='lines', name='Budget', line=dict(color='red', width=2, dash='dash'))) fig.update_layout(title='Monthly Software Spend Trend', height=400) st.plotly_chart(fig, use_container_width=True) # Cost by category col1, col2 = st.columns(2) with col1: category_spend = df_usage.groupby('Category')['Monthly Cost'].sum().reset_index() fig = px.bar(category_spend, x='Category', y='Monthly Cost', title='Spend by Category', color='Monthly Cost', color_continuous_scale='Blues') st.plotly_chart(fig, use_container_width=True) with col2: st.markdown("#### πŸ’΅ Top 5 Expenses") top_expenses = df_usage.nlargest(5, 'Monthly Cost')[['Software', 'Monthly Cost']] for idx, row in top_expenses.iterrows(): st.metric(row['Software'], f"${row['Monthly Cost']:,.0f}/mo") with tab3: st.markdown("### πŸ‘₯ License Utilization Analysis") # Utilization heatmap st.markdown("#### πŸ“Š Utilization Heatmap") # Mock weekly usage data weeks = ['Week 1', 'Week 2', 'Week 3', 'Week 4'] software_list = df_usage['Software'].tolist()[:6] heatmap_data = [] for software in software_list: weekly_usage = [int(50 + (hash(software + week) % 30)) for week in weeks] heatmap_data.append(weekly_usage) fig = go.Figure(data=go.Heatmap( z=heatmap_data, x=weeks, y=software_list, colorscale='RdYlGn', text=heatmap_data, texttemplate='%{text}%', textfont={"size": 10} )) fig.update_layout(title='Usage Patterns Over Time (%)', height=400) st.plotly_chart(fig, use_container_width=True) # Inactive users st.markdown("#### ⚠️ Inactive License Alert") inactive_data = [] for software in SOFTWARE_DATABASE[:5]: inactive_count = int(50 * (0.1 + 0.2 * (hash(software["name"]) % 10) / 10)) if inactive_count > 5: inactive_data.append({ "Software": software["name"], "Inactive Licenses": inactive_count, "Potential Savings": f"${inactive_count * software['pricing_max']:.0f}/mo", "Last Activity": f"{hash(software['name']) % 30 + 30} days ago" }) df_inactive = pd.DataFrame(inactive_data) for idx, row in df_inactive.iterrows(): with st.expander(f"⚠️ **{row['Software']}** - {row['Inactive Licenses']} inactive licenses"): col1, col2, col3 = st.columns(3) with col1: st.metric("Inactive Licenses", row['Inactive Licenses']) with col2: st.metric("Potential Savings", row['Potential Savings']) with col3: st.metric("Last Activity", row['Last Activity']) if st.button(f"Review Users for {row['Software']}", key=f"review_{idx}"): st.info("User review interface would open here in production") with tab4: st.markdown("### 🎯 AI-Powered Optimization Recommendations") if st.button("πŸ€– Generate Optimization Report", type="primary"): with st.spinner("AI is analyzing your usage data..."): prompt = f"""Analyze this software usage data and provide optimization recommendations: Current Software Portfolio: {df_usage.to_json(orient='records')} Total Monthly Spend: $45,000 Unused Licenses: 47 Average Utilization: {df_usage['Utilization %'].mean():.1f}% Provide: 1. **Immediate Actions** (Quick wins for cost savings) 2. **Consolidation Opportunities** (Software that can be replaced/combined) 3. **Right-sizing Recommendations** (License adjustments) 4. **Alternative Solutions** (Better value options) 5. **Implementation Priority** (What to tackle first) 6. **Expected Savings** (Quantify the impact) Be specific with dollar amounts and actionable steps.""" response = call_openai(prompt) st.success("βœ… Optimization Report Generated!") st.markdown(response) st.markdown("---") st.markdown("#### πŸ’‘ Quick Wins") col1, col2 = st.columns(2) with col1: st.warning("**⚠️ Remove Unused Licenses**") st.markdown("47 inactive licenses detected") st.markdown("**Potential Savings**: $8,400/year") st.button("Start License Cleanup", key="cleanup") with col2: st.info("**πŸ’° Bundle Opportunity**") st.markdown("Consolidate 4 tools into Microsoft 365") st.markdown("**Potential Savings**: $3,840/year") st.button("Explore Bundle", key="bundle") # Optimization roadmap st.markdown("#### πŸ—ΊοΈ Optimization Roadmap") roadmap = [ {"Month": "Month 1", "Action": "Remove inactive licenses", "Savings": "$700/mo"}, {"Month": "Month 2", "Action": "Renegotiate Slack contract", "Savings": "$300/mo"}, {"Month": "Month 3", "Action": "Switch to annual billing", "Savings": "$450/mo"}, {"Month": "Month 4", "Action": "Consolidate to Microsoft 365", "Savings": "$320/mo"}, ] for item in roadmap: st.success(f"**{item['Month']}**: {item['Action']} β†’ {item['Savings']} savings") # Footer st.markdown("---") st.markdown("""

Softwares - Intelligent Software Procurement Platform

Powered by Open AI | Made with Streamlit

""", unsafe_allow_html=True)