Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,156 +1,23 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
from transformers import pipeline
|
| 3 |
-
from datetime import datetime
|
| 4 |
-
import json
|
| 5 |
-
import numpy as np
|
| 6 |
|
| 7 |
-
#
|
| 8 |
-
|
| 9 |
-
sentiment_analyzer = pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english")
|
| 10 |
-
text_generator = pipeline("text-generation", model="gpt2")
|
| 11 |
-
except Exception as e:
|
| 12 |
-
print(f"Model loading error: {e}")
|
| 13 |
-
raise
|
| 14 |
-
|
| 15 |
-
# Custom CSS for better UI
|
| 16 |
-
custom_css = """
|
| 17 |
-
footer {visibility: hidden}
|
| 18 |
-
.important-text {
|
| 19 |
-
font-size: 14px;
|
| 20 |
-
color: #666;
|
| 21 |
-
font-style: italic;
|
| 22 |
-
}
|
| 23 |
-
"""
|
| 24 |
|
| 25 |
def analyze_sentiment(text):
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
"analysis": {
|
| 31 |
-
"sentiment": result["label"],
|
| 32 |
-
"confidence": float(result["score"]),
|
| 33 |
-
"processing_time": str(datetime.now() - start_time)
|
| 34 |
-
},
|
| 35 |
-
"original_text": text
|
| 36 |
-
}
|
| 37 |
-
except Exception as e:
|
| 38 |
-
return {"error": str(e)}
|
| 39 |
-
|
| 40 |
-
def generate_text(prompt, length=50, temperature=0.7):
|
| 41 |
-
start_time = datetime.now()
|
| 42 |
-
try:
|
| 43 |
-
generated = text_generator(
|
| 44 |
-
prompt,
|
| 45 |
-
max_length=length,
|
| 46 |
-
num_return_sequences=1,
|
| 47 |
-
temperature=temperature
|
| 48 |
-
)
|
| 49 |
-
return {
|
| 50 |
-
"generated_text": generated[0]["generated_text"],
|
| 51 |
-
"metadata": {
|
| 52 |
-
"model": "GPT-2",
|
| 53 |
-
"length": length,
|
| 54 |
-
"temperature": temperature,
|
| 55 |
-
"processing_time": str(datetime.now() - start_time)
|
| 56 |
-
}
|
| 57 |
-
}
|
| 58 |
-
except Exception as e:
|
| 59 |
-
return {"error": str(e)}
|
| 60 |
|
| 61 |
-
with gr.Blocks(
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
css=custom_css
|
| 65 |
-
) as demo:
|
| 66 |
-
gr.Markdown("""
|
| 67 |
-
# 🏭 NLP Production Endpoint
|
| 68 |
-
**Enterprise-ready NLP services** with monitoring capabilities
|
| 69 |
-
""")
|
| 70 |
-
|
| 71 |
-
with gr.Tab("Sentiment Analysis"):
|
| 72 |
-
with gr.Row():
|
| 73 |
-
with gr.Column(scale=2):
|
| 74 |
-
sentiment_input = gr.Textbox(
|
| 75 |
-
label="Input Text",
|
| 76 |
-
placeholder="Enter text to analyze...",
|
| 77 |
-
lines=3
|
| 78 |
-
)
|
| 79 |
-
with gr.Accordion("Advanced Options", open=False):
|
| 80 |
-
gr.Markdown("No additional options for sentiment analysis", elem_classes="important-text")
|
| 81 |
-
sentiment_button = gr.Button("Analyze", variant="primary")
|
| 82 |
-
|
| 83 |
-
with gr.Column(scale=3):
|
| 84 |
-
sentiment_output = gr.JSON(
|
| 85 |
-
label="Analysis Results",
|
| 86 |
-
container=True
|
| 87 |
-
)
|
| 88 |
-
|
| 89 |
-
gr.Examples(
|
| 90 |
-
examples=[
|
| 91 |
-
"This product revolutionized our workflow!",
|
| 92 |
-
"The service was unsatisfactory and slow.",
|
| 93 |
-
"It meets basic requirements but lacks innovation."
|
| 94 |
-
],
|
| 95 |
-
inputs=sentiment_input,
|
| 96 |
-
label="Try these examples"
|
| 97 |
-
)
|
| 98 |
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
gen_input = gr.Textbox(
|
| 103 |
-
label="Prompt",
|
| 104 |
-
placeholder="Start your creative writing here...",
|
| 105 |
-
lines=3
|
| 106 |
-
)
|
| 107 |
-
with gr.Accordion("Generation Parameters", open=False):
|
| 108 |
-
gen_length = gr.Slider(20, 200, value=50, label="Output Length")
|
| 109 |
-
gen_temp = gr.Slider(0.1, 1.0, value=0.7, step=0.1, label="Creativity (Temperature)")
|
| 110 |
-
gen_button = gr.Button("Generate Text", variant="primary")
|
| 111 |
-
|
| 112 |
-
with gr.Column(scale=3):
|
| 113 |
-
gen_output = gr.JSON(
|
| 114 |
-
label="Generated Output",
|
| 115 |
-
container=True
|
| 116 |
-
)
|
| 117 |
-
|
| 118 |
-
# Monitoring section (hidden by default)
|
| 119 |
-
with gr.Accordion("API Monitoring", open=False):
|
| 120 |
-
gr.Markdown("""
|
| 121 |
-
### Performance Metrics
|
| 122 |
-
- Last request time: `2025-04-29 15:36:26`
|
| 123 |
-
- Average processing time: `0.45s`
|
| 124 |
-
- System health: ✅ Operational
|
| 125 |
-
""")
|
| 126 |
-
|
| 127 |
-
# Footer
|
| 128 |
-
gr.Markdown("---")
|
| 129 |
-
gr.HTML("""
|
| 130 |
-
<div style="text-align: center">
|
| 131 |
-
<p>Powered by Hugging Face Transformers | Gradio {version} | Python 3.10</p>
|
| 132 |
-
<p>Build SHA: 6615a41 | Queued at 2025-04-29 15:36:26</p>
|
| 133 |
-
</div>
|
| 134 |
-
""".format(version=gr.__version__))
|
| 135 |
|
| 136 |
-
|
| 137 |
-
sentiment_button.click(
|
| 138 |
-
fn=analyze_sentiment,
|
| 139 |
-
inputs=sentiment_input,
|
| 140 |
-
outputs=sentiment_output,
|
| 141 |
-
api_name="analyze_sentiment"
|
| 142 |
-
)
|
| 143 |
-
|
| 144 |
-
gen_button.click(
|
| 145 |
-
fn=generate_text,
|
| 146 |
-
inputs=[gen_input, gen_length, gen_temp],
|
| 147 |
-
outputs=gen_output,
|
| 148 |
-
api_name="generate_text"
|
| 149 |
-
)
|
| 150 |
|
| 151 |
-
|
| 152 |
-
demo.launch(
|
| 153 |
-
server_name="0.0.0.0",
|
| 154 |
-
server_port=7860,
|
| 155 |
-
show_api=True
|
| 156 |
-
)
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from transformers import pipeline
|
|
|
|
|
|
|
|
|
|
| 3 |
|
| 4 |
+
# Load sentiment-analysis pipeline
|
| 5 |
+
classifier = pipeline("sentiment-analysis")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
def analyze_sentiment(text):
|
| 8 |
+
result = classifier(text)[0]
|
| 9 |
+
label = result['label']
|
| 10 |
+
score = result['score']
|
| 11 |
+
return f"Sentiment: {label} ({score:.2f})"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
+
with gr.Blocks() as demo:
|
| 14 |
+
gr.Markdown("# 🧠 Sentiment Analyzer")
|
| 15 |
+
gr.Markdown("Enter text and get the sentiment prediction!")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
+
text_input = gr.Textbox(label="Enter your text")
|
| 18 |
+
analyze_button = gr.Button("Analyze Sentiment")
|
| 19 |
+
output = gr.Textbox(label="Result")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
+
analyze_button.click(fn=analyze_sentiment, inputs=text_input, outputs=output)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|