Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import spaces | |
| import os | |
| import shutil | |
| os.environ['SPCONV_ALGO'] = 'native' | |
| from typing import * | |
| import torch | |
| import numpy as np | |
| import imageio | |
| from easydict import EasyDict as edict | |
| from PIL import Image, ImageOps | |
| from trellis.pipelines import TrellisImageTo3DPipeline | |
| from trellis.representations import Gaussian, MeshExtractResult | |
| from trellis.utils import render_utils, postprocessing_utils | |
| import torch | |
| import torchvision.transforms.functional as TF | |
| from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL | |
| from diffusers import DDIMScheduler, EulerAncestralDiscreteScheduler | |
| from pathlib import Path | |
| import logging | |
| logging.basicConfig(level=logging.INFO, format='%(asctime)s - HF_SPACE_BOCETO - %(levelname)s - %(message)s') | |
| style_list = [ | |
| { | |
| "name": "(No style)", | |
| "prompt": "{prompt}", | |
| "negative_prompt": "longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality", | |
| }, | |
| { | |
| "name": "Cinematic", | |
| "prompt": "cinematic still {prompt} . emotional, harmonious, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy", | |
| "negative_prompt": "anime, cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured", | |
| }, | |
| { | |
| "name": "3D Model", | |
| "prompt": "professional 3d model {prompt} . octane render, highly detailed, volumetric, dramatic lighting", | |
| "negative_prompt": "ugly, deformed, noisy, low poly, blurry, painting", | |
| }, | |
| { | |
| "name": "Anime", | |
| "prompt": "anime artwork {prompt} . anime style, key visual, vibrant, studio anime, highly detailed", | |
| "negative_prompt": "photo, deformed, black and white, realism, disfigured, low contrast", | |
| }, | |
| ] | |
| styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list} | |
| STYLE_NAMES = list(styles.keys()) | |
| DEFAULT_STYLE_NAME = "3D Model" | |
| MAX_SEED = np.iinfo(np.int32).max | |
| TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp') | |
| os.makedirs(TMP_DIR, exist_ok=True) | |
| def start_session(req: gr.Request): | |
| session_hash = str(req.session_hash) | |
| user_dir = os.path.join(TMP_DIR, session_hash) | |
| logging.info(f"START SESSION: Creando directorio para la sesión {session_hash} en {user_dir}") | |
| os.makedirs(user_dir, exist_ok=True) | |
| def end_session(req: gr.Request): | |
| session_hash = str(req.session_hash) | |
| user_dir = os.path.join(TMP_DIR, session_hash) | |
| logging.info(f"END SESSION: Intentando eliminar el directorio de la sesión {session_hash} en {user_dir}") | |
| if os.path.exists(user_dir): | |
| try: | |
| shutil.rmtree(user_dir) | |
| logging.info(f"Directorio de la sesión {session_hash} eliminado correctamente.") | |
| except Exception as e: | |
| logging.error(f"Error al eliminar el directorio de la sesión {session_hash}: {e}") | |
| else: | |
| logging.warning(f"El directorio de la sesión {session_hash} no fue encontrado al intentar eliminarlo. Es posible que ya haya sido limpiado.") | |
| def apply_style(style_name: str, positive: str, negative: str = "") -> tuple[str, str]: | |
| p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME]) | |
| return p.replace("{prompt}", positive), n + negative | |
| def get_seed(randomize_seed: bool, seed: int) -> int: | |
| new_seed = np.random.randint(0, MAX_SEED) if randomize_seed else seed | |
| logging.info(f"Usando seed: {new_seed}") | |
| return new_seed | |
| def preprocess_image( | |
| image: Image.Image, | |
| prompt: str = "", | |
| negative_prompt: str = "", | |
| style_name: str = "", | |
| num_steps: int = 25, | |
| guidance_scale: float = 5, | |
| controlnet_conditioning_scale: float = 1.0, | |
| req: gr.Request = None, | |
| ) -> str: | |
| session_hash = str(req.session_hash) | |
| user_dir = os.path.join(TMP_DIR, session_hash) | |
| logging.info(f"[{session_hash}] Iniciando preprocess_image con prompt: '{prompt[:50]}...'") | |
| if image is None: | |
| logging.error(f"[{session_hash}] La entrada de imagen es nula.") | |
| raise ValueError("La imagen de entrada no puede estar vacía.") | |
| input_image = image | |
| width, height = input_image.size | |
| ratio = np.sqrt(1024.0 * 1024.0 / (width * height)) | |
| new_width, new_height = int(width * ratio), int(height * ratio) | |
| input_image = input_image.resize((new_width, new_height)) | |
| if input_image.mode == 'RGBA': | |
| r, g, b, a = input_image.split() | |
| rgb_image = Image.merge('RGB', (r, g, b)) | |
| inverted_image = ImageOps.invert(rgb_image) | |
| inverted_image.putalpha(a) | |
| input_image = inverted_image | |
| else: | |
| input_image = ImageOps.invert(input_image.convert('RGB')) | |
| prompt, negative_prompt = apply_style(style_name, prompt, negative_prompt) | |
| output_image = pipe_control( | |
| prompt=prompt, | |
| negative_prompt=negative_prompt, | |
| image=input_image, | |
| num_inference_steps=num_steps, | |
| controlnet_conditioning_scale=controlnet_conditioning_scale, | |
| guidance_scale=guidance_scale, | |
| width=new_width, | |
| height=new_height, | |
| ).images[0] | |
| processed_image_path = os.path.join(user_dir, 'processed_image.png') | |
| output_image.save(processed_image_path) | |
| logging.info(f"[{session_hash}] Imagen preprocesada y guardada en: {processed_image_path}") | |
| return processed_image_path | |
| def image_to_3d( | |
| image_path: str, | |
| seed: int, | |
| ss_guidance_strength: float, | |
| ss_sampling_steps: int, | |
| slat_guidance_strength: float, | |
| slat_sampling_steps: int, | |
| req: gr.Request, | |
| ) -> Tuple[dict, str]: | |
| session_hash = str(req.session_hash) | |
| user_dir = os.path.join(TMP_DIR, session_hash) | |
| logging.info(f"[{session_hash}] Iniciando image_to_3d desde la imagen: {image_path}") | |
| processed_image = pipeline.preprocess_image(Image.open(image_path)) | |
| outputs = pipeline.run( | |
| processed_image, | |
| seed=seed, | |
| formats=["gaussian", "mesh"], | |
| preprocess_image=False, | |
| sparse_structure_sampler_params={"steps": ss_sampling_steps, "cfg_strength": ss_guidance_strength}, | |
| slat_sampler_params={"steps": slat_sampling_steps, "cfg_strength": slat_guidance_strength}, | |
| ) | |
| logging.info(f"[{session_hash}] Generación del modelo completada. Renderizando video...") | |
| video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color'] | |
| video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal'] | |
| video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))] | |
| video_path = os.path.join(user_dir, 'sample.mp4') | |
| imageio.mimsave(video_path, video, fps=15) | |
| state = pack_state(outputs['gaussian'][0], outputs['mesh'][0]) | |
| torch.cuda.empty_cache() | |
| logging.info(f"[{session_hash}] Video renderizado y estado empaquetado. Devolviendo: {video_path}") | |
| return state, video_path | |
| def extract_glb(state: dict, mesh_simplify: float, texture_size: int, req: gr.Request) -> Tuple[str, str]: | |
| session_hash = str(req.session_hash) | |
| user_dir = os.path.join(TMP_DIR, session_hash) | |
| logging.info(f"[{session_hash}] Iniciando extract_glb...") | |
| gs, mesh = unpack_state(state) | |
| glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False) | |
| glb_path = os.path.join(user_dir, 'sample.glb') | |
| glb.export(glb_path) | |
| torch.cuda.empty_cache() | |
| logging.info(f"[{session_hash}] GLB extraído. Devolviendo: {glb_path}") | |
| return glb_path, glb_path | |
| def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict: | |
| return { | |
| 'gaussian': {**gs.init_params, '_xyz': gs._xyz.cpu().numpy(), '_features_dc': gs._features_dc.cpu().numpy(), '_scaling': gs._scaling.cpu().numpy(), '_rotation': gs._rotation.cpu().numpy(), '_opacity': gs._opacity.cpu().numpy()}, | |
| 'mesh': {'vertices': mesh.vertices.cpu().numpy(), 'faces': mesh.faces.cpu().numpy()}, | |
| } | |
| def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]: | |
| gs = Gaussian(aabb=state['gaussian']['aabb'], sh_degree=state['gaussian']['sh_degree'], mininum_kernel_size=state['gaussian']['mininum_kernel_size'], scaling_bias=state['gaussian']['scaling_bias'], opacity_bias=state['gaussian']['opacity_bias'], scaling_activation=state['gaussian']['scaling_activation']) | |
| gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda') | |
| gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda') | |
| gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda') | |
| gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda') | |
| gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda') | |
| mesh = edict(vertices=torch.tensor(state['mesh']['vertices'], device='cuda'), faces=torch.tensor(state['mesh']['faces'], device='cuda')) | |
| return gs, mesh | |
| def extract_gaussian(state: dict, req: gr.Request) -> Tuple[str, str]: | |
| user_dir = os.path.join(TMP_DIR, str(req.session_hash)) | |
| gs, _ = unpack_state(state) | |
| gaussian_path = os.path.join(user_dir, 'sample.ply') | |
| gs.save_ply(gaussian_path) | |
| torch.cuda.empty_cache() | |
| return gaussian_path, gaussian_path | |
| with gr.Blocks(delete_cache=(600, 600)) as demo: | |
| gr.Markdown(""" | |
| # UTPL - Conversión de Boceto a objetos 3D usando IA | |
| ### Tesis: "Objetos tridimensionales creados por IA: Innovación en entornos virtuales" | |
| **Autor:** Carlos Vargas | |
| **Base técnica:** Adaptación de [TRELLIS](https://trellis3d.github.io/) (herramienta de código abierto para generación 3D) | |
| **Propósito educativo:** Demostraciones académicas e Investigación en modelado 3D automático. | |
| --- | |
| **Modelos Utilizados:** | |
| - **ControlNet Scribble:** `xinsir/controlnet-scribble-sdxl-1.0` | |
| - **Stable Diffusion Base:** `sd-community/sdxl-flash` | |
| - **VAE:** `madebyollin/sdxl-vae-fp16-fix` | |
| """) | |
| with gr.Row(): | |
| with gr.Column(): | |
| with gr.Column(): | |
| # --- ¡MODIFICADO! Cambiamos ImageEditor por Image --- | |
| image_prompt = gr.Image(label="Input sketch", type="pil", image_mode="RGBA", height=512) | |
| with gr.Row(): | |
| sketch_btn = gr.Button("Process Sketch") | |
| generate_btn = gr.Button("Generate 3D") | |
| with gr.Row(): | |
| prompt = gr.Textbox(label="Prompt") | |
| style = gr.Dropdown(label="Style", choices=STYLE_NAMES, value=DEFAULT_STYLE_NAME) | |
| with gr.Accordion(label="Generation Settings", open=False): | |
| with gr.Tab(label="Sketch-to-Image Generation"): | |
| negative_prompt = gr.Textbox(label="Negative prompt") | |
| num_steps = gr.Slider(1, 20, label="Number of steps", value=8, step=1) | |
| guidance_scale = gr.Slider(0.1, 10.0, label="Guidance scale", value=5, step=0.1) | |
| controlnet_conditioning_scale = gr.Slider(0.5, 5.0, label="ControlNet Conditioning Scale", value=0.85, step=0.01) | |
| with gr.Tab(label="3D Generation"): | |
| seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1) | |
| randomize_seed = gr.Checkbox(label="Randomize Seed", value=True) | |
| gr.Markdown("Stage 1: Sparse Structure Generation") | |
| with gr.Row(): | |
| ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1) | |
| ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1) | |
| gr.Markdown("Stage 2: Structured Latent Generation") | |
| with gr.Row(): | |
| slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1) | |
| slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1) | |
| with gr.Accordion(label="GLB Extraction Settings", open=False): | |
| mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01) | |
| texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512) | |
| with gr.Row(): | |
| extract_glb_btn = gr.Button("Extract GLB", interactive=False) | |
| extract_gs_btn = gr.Button("Extract Gaussian", interactive=False) | |
| with gr.Column(): | |
| video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300) | |
| image_prompt_processed = gr.Image(label="Processed Sketch", interactive=False, type="filepath", height=512) | |
| model_output = gr.Model3D(label="Extracted GLB/Gaussian", height=300) | |
| with gr.Row(): | |
| download_glb = gr.DownloadButton(label="Download GLB", interactive=False) | |
| download_gs = gr.DownloadButton(label="Download Gaussian", interactive=False) | |
| output_buf = gr.State() | |
| demo.load(start_session) | |
| demo.unload(end_session) | |
| sketch_btn.click( | |
| preprocess_image, | |
| inputs=[image_prompt, prompt, negative_prompt, style, num_steps, guidance_scale, controlnet_conditioning_scale], | |
| outputs=[image_prompt_processed], | |
| api_name="preprocess_image" | |
| ) | |
| generate_btn.click( | |
| get_seed, | |
| inputs=[randomize_seed, seed], | |
| outputs=[seed], | |
| ).then( | |
| image_to_3d, | |
| inputs=[image_prompt_processed, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps], | |
| outputs=[output_buf, video_output], | |
| api_name="image_to_3d" | |
| ) | |
| generate_btn.click( | |
| lambda: tuple([gr.Button(interactive=True), gr.Button(interactive=True)]), | |
| outputs=[extract_glb_btn, extract_gs_btn], | |
| ) | |
| video_output.clear( | |
| lambda: tuple([gr.Button(interactive=False), gr.Button(interactive=False)]), | |
| outputs=[extract_glb_btn, extract_gs_btn], | |
| ) | |
| extract_glb_btn.click( | |
| extract_glb, | |
| inputs=[output_buf, mesh_simplify, texture_size], | |
| outputs=[model_output, download_glb], | |
| api_name="extract_glb" | |
| ) | |
| extract_glb_btn.click( | |
| lambda: gr.Button(interactive=True), | |
| outputs=[download_glb] | |
| ) | |
| extract_gs_btn.click( | |
| extract_gaussian, | |
| inputs=[output_buf], | |
| outputs=[model_output, download_gs], | |
| api_name="extract_gaussian" | |
| ) | |
| extract_gs_btn.click( | |
| lambda: gr.Button(interactive=True), | |
| outputs=[download_gs] | |
| ) | |
| model_output.clear( | |
| lambda: gr.Button(interactive=False), | |
| outputs=[download_glb], | |
| ) | |
| if __name__ == "__main__": | |
| pipeline = TrellisImageTo3DPipeline.from_pretrained("cavargas10/TRELLIS") | |
| pipeline.cuda() | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| controlnet = ControlNetModel.from_pretrained("xinsir/controlnet-scribble-sdxl-1.0", torch_dtype=torch.float16) | |
| vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) | |
| pipe_control = StableDiffusionXLControlNetPipeline.from_pretrained("sd-community/sdxl-flash", controlnet=controlnet, vae=vae, torch_dtype=torch.float16) | |
| pipe_control.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe_control.scheduler.config) | |
| pipe_control.to(device) | |
| try: | |
| pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8))) | |
| except: | |
| pass | |
| demo.launch(show_error=True) |