Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -15,22 +15,18 @@ from trellis.pipelines import TrellisImageTo3DPipeline
|
|
15 |
from trellis.representations import Gaussian, MeshExtractResult
|
16 |
from trellis.utils import render_utils, postprocessing_utils
|
17 |
|
18 |
-
|
19 |
MAX_SEED = np.iinfo(np.int32).max
|
20 |
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
|
21 |
os.makedirs(TMP_DIR, exist_ok=True)
|
22 |
|
23 |
-
|
24 |
def start_session(req: gr.Request):
|
25 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
26 |
os.makedirs(user_dir, exist_ok=True)
|
27 |
|
28 |
-
|
29 |
def end_session(req: gr.Request):
|
30 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
31 |
shutil.rmtree(user_dir)
|
32 |
|
33 |
-
|
34 |
def preprocess_image(image: Image.Image) -> Image.Image:
|
35 |
processed_image = pipeline.preprocess_image(image)
|
36 |
return processed_image
|
@@ -51,7 +47,6 @@ def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
|
|
51 |
},
|
52 |
}
|
53 |
|
54 |
-
|
55 |
def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
|
56 |
gs = Gaussian(
|
57 |
aabb=state['gaussian']['aabb'],
|
@@ -74,14 +69,9 @@ def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
|
|
74 |
|
75 |
return gs, mesh
|
76 |
|
77 |
-
|
78 |
def get_seed(randomize_seed: bool, seed: int) -> int:
|
79 |
-
"""
|
80 |
-
Get the random seed.
|
81 |
-
"""
|
82 |
return np.random.randint(0, MAX_SEED) if randomize_seed else seed
|
83 |
|
84 |
-
|
85 |
@spaces.GPU
|
86 |
def image_to_3d(
|
87 |
image: Image.Image,
|
@@ -117,7 +107,6 @@ def image_to_3d(
|
|
117 |
torch.cuda.empty_cache()
|
118 |
return state, video_path
|
119 |
|
120 |
-
|
121 |
@spaces.GPU(duration=90)
|
122 |
def extract_glb(
|
123 |
state: dict,
|
@@ -125,7 +114,6 @@ def extract_glb(
|
|
125 |
texture_size: int,
|
126 |
req: gr.Request,
|
127 |
) -> Tuple[str, str]:
|
128 |
-
|
129 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
130 |
gs, mesh = unpack_state(state)
|
131 |
glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
|
@@ -134,20 +122,7 @@ def extract_glb(
|
|
134 |
torch.cuda.empty_cache()
|
135 |
return glb_path, glb_path
|
136 |
|
137 |
-
@spaces.GPU
|
138 |
-
def extract_gaussian(state: dict, req: gr.Request) -> Tuple[str, str]:
|
139 |
-
|
140 |
-
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
141 |
-
gs, _ = unpack_state(state)
|
142 |
-
gaussian_path = os.path.join(user_dir, 'sample.ply')
|
143 |
-
gs.save_ply(gaussian_path)
|
144 |
-
torch.cuda.empty_cache()
|
145 |
-
return gaussian_path, gaussian_path
|
146 |
-
|
147 |
def split_image(image: Image.Image) -> List[Image.Image]:
|
148 |
-
"""
|
149 |
-
Split an image into multiple views.
|
150 |
-
"""
|
151 |
image = np.array(image)
|
152 |
alpha = image[..., 3]
|
153 |
alpha = np.any(alpha>0, axis=0)
|
@@ -158,14 +133,13 @@ def split_image(image: Image.Image) -> List[Image.Image]:
|
|
158 |
images.append(Image.fromarray(image[:, s:e+1]))
|
159 |
return [preprocess_image(image) for image in images]
|
160 |
|
161 |
-
|
162 |
with gr.Blocks(delete_cache=(600, 600)) as demo:
|
163 |
gr.Markdown("""
|
164 |
## Image to 3D Asset with [TRELLIS](https://trellis3d.github.io/)
|
165 |
* Upload an image and click "Generate" to create a 3D asset. If the image has alpha channel, it be used as the mask. Otherwise, we use `rembg` to remove the background.
|
166 |
* If you find the generated 3D asset satisfactory, click "Extract GLB" to extract the GLB file and download it.
|
167 |
|
168 |
-
✨New:
|
169 |
""")
|
170 |
|
171 |
with gr.Row():
|
@@ -192,24 +166,17 @@ with gr.Blocks(delete_cache=(600, 600)) as demo:
|
|
192 |
mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
|
193 |
texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
|
194 |
|
195 |
-
|
196 |
-
extract_glb_btn = gr.Button("Extract GLB", interactive=False)
|
197 |
-
extract_gs_btn = gr.Button("Extract Gaussian", interactive=False)
|
198 |
-
gr.Markdown("""
|
199 |
-
*NOTE: Gaussian file can be very large (~50MB), it will take a while to display and download.*
|
200 |
-
""")
|
201 |
|
202 |
with gr.Column():
|
203 |
video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300)
|
204 |
-
model_output = LitModel3D(label="Extracted GLB
|
205 |
|
206 |
with gr.Row():
|
207 |
download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
|
208 |
-
|
209 |
-
|
210 |
output_buf = gr.State()
|
211 |
|
212 |
-
# Handlers
|
213 |
demo.load(start_session)
|
214 |
demo.unload(end_session)
|
215 |
|
@@ -228,13 +195,13 @@ with gr.Blocks(delete_cache=(600, 600)) as demo:
|
|
228 |
inputs=[image_prompt, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps],
|
229 |
outputs=[output_buf, video_output],
|
230 |
).then(
|
231 |
-
lambda:
|
232 |
-
outputs=[extract_glb_btn
|
233 |
)
|
234 |
|
235 |
video_output.clear(
|
236 |
-
lambda:
|
237 |
-
outputs=[extract_glb_btn
|
238 |
)
|
239 |
|
240 |
extract_glb_btn.click(
|
@@ -245,23 +212,12 @@ with gr.Blocks(delete_cache=(600, 600)) as demo:
|
|
245 |
lambda: gr.Button(interactive=True),
|
246 |
outputs=[download_glb],
|
247 |
)
|
248 |
-
|
249 |
-
extract_gs_btn.click(
|
250 |
-
extract_gaussian,
|
251 |
-
inputs=[output_buf],
|
252 |
-
outputs=[model_output, download_gs],
|
253 |
-
).then(
|
254 |
-
lambda: gr.Button(interactive=True),
|
255 |
-
outputs=[download_gs],
|
256 |
-
)
|
257 |
|
258 |
model_output.clear(
|
259 |
lambda: gr.Button(interactive=False),
|
260 |
outputs=[download_glb],
|
261 |
)
|
262 |
|
263 |
-
|
264 |
-
# Launch the Gradio app
|
265 |
if __name__ == "__main__":
|
266 |
pipeline = TrellisImageTo3DPipeline.from_pretrained("cavargas10/TRELLIS")
|
267 |
pipeline.cuda()
|
@@ -269,4 +225,4 @@ if __name__ == "__main__":
|
|
269 |
pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8))) # Preload rembg
|
270 |
except:
|
271 |
pass
|
272 |
-
demo.launch()
|
|
|
15 |
from trellis.representations import Gaussian, MeshExtractResult
|
16 |
from trellis.utils import render_utils, postprocessing_utils
|
17 |
|
|
|
18 |
MAX_SEED = np.iinfo(np.int32).max
|
19 |
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
|
20 |
os.makedirs(TMP_DIR, exist_ok=True)
|
21 |
|
|
|
22 |
def start_session(req: gr.Request):
|
23 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
24 |
os.makedirs(user_dir, exist_ok=True)
|
25 |
|
|
|
26 |
def end_session(req: gr.Request):
|
27 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
28 |
shutil.rmtree(user_dir)
|
29 |
|
|
|
30 |
def preprocess_image(image: Image.Image) -> Image.Image:
|
31 |
processed_image = pipeline.preprocess_image(image)
|
32 |
return processed_image
|
|
|
47 |
},
|
48 |
}
|
49 |
|
|
|
50 |
def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
|
51 |
gs = Gaussian(
|
52 |
aabb=state['gaussian']['aabb'],
|
|
|
69 |
|
70 |
return gs, mesh
|
71 |
|
|
|
72 |
def get_seed(randomize_seed: bool, seed: int) -> int:
|
|
|
|
|
|
|
73 |
return np.random.randint(0, MAX_SEED) if randomize_seed else seed
|
74 |
|
|
|
75 |
@spaces.GPU
|
76 |
def image_to_3d(
|
77 |
image: Image.Image,
|
|
|
107 |
torch.cuda.empty_cache()
|
108 |
return state, video_path
|
109 |
|
|
|
110 |
@spaces.GPU(duration=90)
|
111 |
def extract_glb(
|
112 |
state: dict,
|
|
|
114 |
texture_size: int,
|
115 |
req: gr.Request,
|
116 |
) -> Tuple[str, str]:
|
|
|
117 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
118 |
gs, mesh = unpack_state(state)
|
119 |
glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
|
|
|
122 |
torch.cuda.empty_cache()
|
123 |
return glb_path, glb_path
|
124 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
def split_image(image: Image.Image) -> List[Image.Image]:
|
|
|
|
|
|
|
126 |
image = np.array(image)
|
127 |
alpha = image[..., 3]
|
128 |
alpha = np.any(alpha>0, axis=0)
|
|
|
133 |
images.append(Image.fromarray(image[:, s:e+1]))
|
134 |
return [preprocess_image(image) for image in images]
|
135 |
|
|
|
136 |
with gr.Blocks(delete_cache=(600, 600)) as demo:
|
137 |
gr.Markdown("""
|
138 |
## Image to 3D Asset with [TRELLIS](https://trellis3d.github.io/)
|
139 |
* Upload an image and click "Generate" to create a 3D asset. If the image has alpha channel, it be used as the mask. Otherwise, we use `rembg` to remove the background.
|
140 |
* If you find the generated 3D asset satisfactory, click "Extract GLB" to extract the GLB file and download it.
|
141 |
|
142 |
+
✨New: Experimental multi-image support.
|
143 |
""")
|
144 |
|
145 |
with gr.Row():
|
|
|
166 |
mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
|
167 |
texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
|
168 |
|
169 |
+
extract_glb_btn = gr.Button("Extract GLB", interactive=False)
|
|
|
|
|
|
|
|
|
|
|
170 |
|
171 |
with gr.Column():
|
172 |
video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300)
|
173 |
+
model_output = LitModel3D(label="Extracted GLB", exposure=10.0, height=300)
|
174 |
|
175 |
with gr.Row():
|
176 |
download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
|
177 |
+
|
|
|
178 |
output_buf = gr.State()
|
179 |
|
|
|
180 |
demo.load(start_session)
|
181 |
demo.unload(end_session)
|
182 |
|
|
|
195 |
inputs=[image_prompt, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps],
|
196 |
outputs=[output_buf, video_output],
|
197 |
).then(
|
198 |
+
lambda: gr.Button(interactive=True),
|
199 |
+
outputs=[extract_glb_btn],
|
200 |
)
|
201 |
|
202 |
video_output.clear(
|
203 |
+
lambda: gr.Button(interactive=False),
|
204 |
+
outputs=[extract_glb_btn],
|
205 |
)
|
206 |
|
207 |
extract_glb_btn.click(
|
|
|
212 |
lambda: gr.Button(interactive=True),
|
213 |
outputs=[download_glb],
|
214 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
215 |
|
216 |
model_output.clear(
|
217 |
lambda: gr.Button(interactive=False),
|
218 |
outputs=[download_glb],
|
219 |
)
|
220 |
|
|
|
|
|
221 |
if __name__ == "__main__":
|
222 |
pipeline = TrellisImageTo3DPipeline.from_pretrained("cavargas10/TRELLIS")
|
223 |
pipeline.cuda()
|
|
|
225 |
pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8))) # Preload rembg
|
226 |
except:
|
227 |
pass
|
228 |
+
demo.launch()
|