Spaces:
Running
on
Zero
Running
on
Zero
Update trellis/representations/mesh/cube2mesh.py
Browse files
trellis/representations/mesh/cube2mesh.py
CHANGED
@@ -1,143 +1,143 @@
|
|
1 |
-
import torch
|
2 |
-
from ...modules.sparse import SparseTensor
|
3 |
-
from easydict import EasyDict as edict
|
4 |
-
from .utils_cube import *
|
5 |
-
from .flexicubes
|
6 |
-
|
7 |
-
|
8 |
-
class MeshExtractResult:
|
9 |
-
def __init__(self,
|
10 |
-
vertices,
|
11 |
-
faces,
|
12 |
-
vertex_attrs=None,
|
13 |
-
res=64
|
14 |
-
):
|
15 |
-
self.vertices = vertices
|
16 |
-
self.faces = faces.long()
|
17 |
-
self.vertex_attrs = vertex_attrs
|
18 |
-
self.face_normal = self.comput_face_normals(vertices, faces)
|
19 |
-
self.res = res
|
20 |
-
self.success = (vertices.shape[0] != 0 and faces.shape[0] != 0)
|
21 |
-
|
22 |
-
# training only
|
23 |
-
self.tsdf_v = None
|
24 |
-
self.tsdf_s = None
|
25 |
-
self.reg_loss = None
|
26 |
-
|
27 |
-
def comput_face_normals(self, verts, faces):
|
28 |
-
i0 = faces[..., 0].long()
|
29 |
-
i1 = faces[..., 1].long()
|
30 |
-
i2 = faces[..., 2].long()
|
31 |
-
|
32 |
-
v0 = verts[i0, :]
|
33 |
-
v1 = verts[i1, :]
|
34 |
-
v2 = verts[i2, :]
|
35 |
-
face_normals = torch.cross(v1 - v0, v2 - v0, dim=-1)
|
36 |
-
face_normals = torch.nn.functional.normalize(face_normals, dim=1)
|
37 |
-
# print(face_normals.min(), face_normals.max(), face_normals.shape)
|
38 |
-
return face_normals[:, None, :].repeat(1, 3, 1)
|
39 |
-
|
40 |
-
def comput_v_normals(self, verts, faces):
|
41 |
-
i0 = faces[..., 0].long()
|
42 |
-
i1 = faces[..., 1].long()
|
43 |
-
i2 = faces[..., 2].long()
|
44 |
-
|
45 |
-
v0 = verts[i0, :]
|
46 |
-
v1 = verts[i1, :]
|
47 |
-
v2 = verts[i2, :]
|
48 |
-
face_normals = torch.cross(v1 - v0, v2 - v0, dim=-1)
|
49 |
-
v_normals = torch.zeros_like(verts)
|
50 |
-
v_normals.scatter_add_(0, i0[..., None].repeat(1, 3), face_normals)
|
51 |
-
v_normals.scatter_add_(0, i1[..., None].repeat(1, 3), face_normals)
|
52 |
-
v_normals.scatter_add_(0, i2[..., None].repeat(1, 3), face_normals)
|
53 |
-
|
54 |
-
v_normals = torch.nn.functional.normalize(v_normals, dim=1)
|
55 |
-
return v_normals
|
56 |
-
|
57 |
-
|
58 |
-
class SparseFeatures2Mesh:
|
59 |
-
def __init__(self, device="cuda", res=64, use_color=True):
|
60 |
-
'''
|
61 |
-
a model to generate a mesh from sparse features structures using flexicube
|
62 |
-
'''
|
63 |
-
super().__init__()
|
64 |
-
self.device=device
|
65 |
-
self.res = res
|
66 |
-
self.mesh_extractor = FlexiCubes(device=device)
|
67 |
-
self.sdf_bias = -1.0 / res
|
68 |
-
verts, cube = construct_dense_grid(self.res, self.device)
|
69 |
-
self.reg_c = cube.to(self.device)
|
70 |
-
self.reg_v = verts.to(self.device)
|
71 |
-
self.use_color = use_color
|
72 |
-
self._calc_layout()
|
73 |
-
|
74 |
-
def _calc_layout(self):
|
75 |
-
LAYOUTS = {
|
76 |
-
'sdf': {'shape': (8, 1), 'size': 8},
|
77 |
-
'deform': {'shape': (8, 3), 'size': 8 * 3},
|
78 |
-
'weights': {'shape': (21,), 'size': 21}
|
79 |
-
}
|
80 |
-
if self.use_color:
|
81 |
-
'''
|
82 |
-
6 channel color including normal map
|
83 |
-
'''
|
84 |
-
LAYOUTS['color'] = {'shape': (8, 6,), 'size': 8 * 6}
|
85 |
-
self.layouts = edict(LAYOUTS)
|
86 |
-
start = 0
|
87 |
-
for k, v in self.layouts.items():
|
88 |
-
v['range'] = (start, start + v['size'])
|
89 |
-
start += v['size']
|
90 |
-
self.feats_channels = start
|
91 |
-
|
92 |
-
def get_layout(self, feats : torch.Tensor, name : str):
|
93 |
-
if name not in self.layouts:
|
94 |
-
return None
|
95 |
-
return feats[:, self.layouts[name]['range'][0]:self.layouts[name]['range'][1]].reshape(-1, *self.layouts[name]['shape'])
|
96 |
-
|
97 |
-
def __call__(self, cubefeats : SparseTensor, training=False):
|
98 |
-
"""
|
99 |
-
Generates a mesh based on the specified sparse voxel structures.
|
100 |
-
Args:
|
101 |
-
cube_attrs [Nx21] : Sparse Tensor attrs about cube weights
|
102 |
-
verts_attrs [Nx10] : [0:1] SDF [1:4] deform [4:7] color [7:10] normal
|
103 |
-
Returns:
|
104 |
-
return the success tag and ni you loss,
|
105 |
-
"""
|
106 |
-
# add sdf bias to verts_attrs
|
107 |
-
coords = cubefeats.coords[:, 1:]
|
108 |
-
feats = cubefeats.feats
|
109 |
-
|
110 |
-
sdf, deform, color, weights = [self.get_layout(feats, name) for name in ['sdf', 'deform', 'color', 'weights']]
|
111 |
-
sdf += self.sdf_bias
|
112 |
-
v_attrs = [sdf, deform, color] if self.use_color else [sdf, deform]
|
113 |
-
v_pos, v_attrs, reg_loss = sparse_cube2verts(coords, torch.cat(v_attrs, dim=-1), training=training)
|
114 |
-
v_attrs_d = get_dense_attrs(v_pos, v_attrs, res=self.res+1, sdf_init=True)
|
115 |
-
weights_d = get_dense_attrs(coords, weights, res=self.res, sdf_init=False)
|
116 |
-
if self.use_color:
|
117 |
-
sdf_d, deform_d, colors_d = v_attrs_d[..., 0], v_attrs_d[..., 1:4], v_attrs_d[..., 4:]
|
118 |
-
else:
|
119 |
-
sdf_d, deform_d = v_attrs_d[..., 0], v_attrs_d[..., 1:4]
|
120 |
-
colors_d = None
|
121 |
-
|
122 |
-
x_nx3 = get_defomed_verts(self.reg_v, deform_d, self.res)
|
123 |
-
|
124 |
-
vertices, faces, L_dev, colors = self.mesh_extractor(
|
125 |
-
voxelgrid_vertices=x_nx3,
|
126 |
-
scalar_field=sdf_d,
|
127 |
-
cube_idx=self.reg_c,
|
128 |
-
resolution=self.res,
|
129 |
-
beta=weights_d[:, :12],
|
130 |
-
alpha=weights_d[:, 12:20],
|
131 |
-
gamma_f=weights_d[:, 20],
|
132 |
-
voxelgrid_colors=colors_d,
|
133 |
-
training=training)
|
134 |
-
|
135 |
-
mesh = MeshExtractResult(vertices=vertices, faces=faces, vertex_attrs=colors, res=self.res)
|
136 |
-
if training:
|
137 |
-
if mesh.success:
|
138 |
-
reg_loss += L_dev.mean() * 0.5
|
139 |
-
reg_loss += (weights[:,:20]).abs().mean() * 0.2
|
140 |
-
mesh.reg_loss = reg_loss
|
141 |
-
mesh.tsdf_v = get_defomed_verts(v_pos, v_attrs[:, 1:4], self.res)
|
142 |
-
mesh.tsdf_s = v_attrs[:, 0]
|
143 |
-
return mesh
|
|
|
1 |
+
import torch
|
2 |
+
from ...modules.sparse import SparseTensor
|
3 |
+
from easydict import EasyDict as edict
|
4 |
+
from .utils_cube import *
|
5 |
+
from .flexicubes import FlexiCubes
|
6 |
+
|
7 |
+
|
8 |
+
class MeshExtractResult:
|
9 |
+
def __init__(self,
|
10 |
+
vertices,
|
11 |
+
faces,
|
12 |
+
vertex_attrs=None,
|
13 |
+
res=64
|
14 |
+
):
|
15 |
+
self.vertices = vertices
|
16 |
+
self.faces = faces.long()
|
17 |
+
self.vertex_attrs = vertex_attrs
|
18 |
+
self.face_normal = self.comput_face_normals(vertices, faces)
|
19 |
+
self.res = res
|
20 |
+
self.success = (vertices.shape[0] != 0 and faces.shape[0] != 0)
|
21 |
+
|
22 |
+
# training only
|
23 |
+
self.tsdf_v = None
|
24 |
+
self.tsdf_s = None
|
25 |
+
self.reg_loss = None
|
26 |
+
|
27 |
+
def comput_face_normals(self, verts, faces):
|
28 |
+
i0 = faces[..., 0].long()
|
29 |
+
i1 = faces[..., 1].long()
|
30 |
+
i2 = faces[..., 2].long()
|
31 |
+
|
32 |
+
v0 = verts[i0, :]
|
33 |
+
v1 = verts[i1, :]
|
34 |
+
v2 = verts[i2, :]
|
35 |
+
face_normals = torch.cross(v1 - v0, v2 - v0, dim=-1)
|
36 |
+
face_normals = torch.nn.functional.normalize(face_normals, dim=1)
|
37 |
+
# print(face_normals.min(), face_normals.max(), face_normals.shape)
|
38 |
+
return face_normals[:, None, :].repeat(1, 3, 1)
|
39 |
+
|
40 |
+
def comput_v_normals(self, verts, faces):
|
41 |
+
i0 = faces[..., 0].long()
|
42 |
+
i1 = faces[..., 1].long()
|
43 |
+
i2 = faces[..., 2].long()
|
44 |
+
|
45 |
+
v0 = verts[i0, :]
|
46 |
+
v1 = verts[i1, :]
|
47 |
+
v2 = verts[i2, :]
|
48 |
+
face_normals = torch.cross(v1 - v0, v2 - v0, dim=-1)
|
49 |
+
v_normals = torch.zeros_like(verts)
|
50 |
+
v_normals.scatter_add_(0, i0[..., None].repeat(1, 3), face_normals)
|
51 |
+
v_normals.scatter_add_(0, i1[..., None].repeat(1, 3), face_normals)
|
52 |
+
v_normals.scatter_add_(0, i2[..., None].repeat(1, 3), face_normals)
|
53 |
+
|
54 |
+
v_normals = torch.nn.functional.normalize(v_normals, dim=1)
|
55 |
+
return v_normals
|
56 |
+
|
57 |
+
|
58 |
+
class SparseFeatures2Mesh:
|
59 |
+
def __init__(self, device="cuda", res=64, use_color=True):
|
60 |
+
'''
|
61 |
+
a model to generate a mesh from sparse features structures using flexicube
|
62 |
+
'''
|
63 |
+
super().__init__()
|
64 |
+
self.device=device
|
65 |
+
self.res = res
|
66 |
+
self.mesh_extractor = FlexiCubes(device=device)
|
67 |
+
self.sdf_bias = -1.0 / res
|
68 |
+
verts, cube = construct_dense_grid(self.res, self.device)
|
69 |
+
self.reg_c = cube.to(self.device)
|
70 |
+
self.reg_v = verts.to(self.device)
|
71 |
+
self.use_color = use_color
|
72 |
+
self._calc_layout()
|
73 |
+
|
74 |
+
def _calc_layout(self):
|
75 |
+
LAYOUTS = {
|
76 |
+
'sdf': {'shape': (8, 1), 'size': 8},
|
77 |
+
'deform': {'shape': (8, 3), 'size': 8 * 3},
|
78 |
+
'weights': {'shape': (21,), 'size': 21}
|
79 |
+
}
|
80 |
+
if self.use_color:
|
81 |
+
'''
|
82 |
+
6 channel color including normal map
|
83 |
+
'''
|
84 |
+
LAYOUTS['color'] = {'shape': (8, 6,), 'size': 8 * 6}
|
85 |
+
self.layouts = edict(LAYOUTS)
|
86 |
+
start = 0
|
87 |
+
for k, v in self.layouts.items():
|
88 |
+
v['range'] = (start, start + v['size'])
|
89 |
+
start += v['size']
|
90 |
+
self.feats_channels = start
|
91 |
+
|
92 |
+
def get_layout(self, feats : torch.Tensor, name : str):
|
93 |
+
if name not in self.layouts:
|
94 |
+
return None
|
95 |
+
return feats[:, self.layouts[name]['range'][0]:self.layouts[name]['range'][1]].reshape(-1, *self.layouts[name]['shape'])
|
96 |
+
|
97 |
+
def __call__(self, cubefeats : SparseTensor, training=False):
|
98 |
+
"""
|
99 |
+
Generates a mesh based on the specified sparse voxel structures.
|
100 |
+
Args:
|
101 |
+
cube_attrs [Nx21] : Sparse Tensor attrs about cube weights
|
102 |
+
verts_attrs [Nx10] : [0:1] SDF [1:4] deform [4:7] color [7:10] normal
|
103 |
+
Returns:
|
104 |
+
return the success tag and ni you loss,
|
105 |
+
"""
|
106 |
+
# add sdf bias to verts_attrs
|
107 |
+
coords = cubefeats.coords[:, 1:]
|
108 |
+
feats = cubefeats.feats
|
109 |
+
|
110 |
+
sdf, deform, color, weights = [self.get_layout(feats, name) for name in ['sdf', 'deform', 'color', 'weights']]
|
111 |
+
sdf += self.sdf_bias
|
112 |
+
v_attrs = [sdf, deform, color] if self.use_color else [sdf, deform]
|
113 |
+
v_pos, v_attrs, reg_loss = sparse_cube2verts(coords, torch.cat(v_attrs, dim=-1), training=training)
|
114 |
+
v_attrs_d = get_dense_attrs(v_pos, v_attrs, res=self.res+1, sdf_init=True)
|
115 |
+
weights_d = get_dense_attrs(coords, weights, res=self.res, sdf_init=False)
|
116 |
+
if self.use_color:
|
117 |
+
sdf_d, deform_d, colors_d = v_attrs_d[..., 0], v_attrs_d[..., 1:4], v_attrs_d[..., 4:]
|
118 |
+
else:
|
119 |
+
sdf_d, deform_d = v_attrs_d[..., 0], v_attrs_d[..., 1:4]
|
120 |
+
colors_d = None
|
121 |
+
|
122 |
+
x_nx3 = get_defomed_verts(self.reg_v, deform_d, self.res)
|
123 |
+
|
124 |
+
vertices, faces, L_dev, colors = self.mesh_extractor(
|
125 |
+
voxelgrid_vertices=x_nx3,
|
126 |
+
scalar_field=sdf_d,
|
127 |
+
cube_idx=self.reg_c,
|
128 |
+
resolution=self.res,
|
129 |
+
beta=weights_d[:, :12],
|
130 |
+
alpha=weights_d[:, 12:20],
|
131 |
+
gamma_f=weights_d[:, 20],
|
132 |
+
voxelgrid_colors=colors_d,
|
133 |
+
training=training)
|
134 |
+
|
135 |
+
mesh = MeshExtractResult(vertices=vertices, faces=faces, vertex_attrs=colors, res=self.res)
|
136 |
+
if training:
|
137 |
+
if mesh.success:
|
138 |
+
reg_loss += L_dev.mean() * 0.5
|
139 |
+
reg_loss += (weights[:,:20]).abs().mean() * 0.2
|
140 |
+
mesh.reg_loss = reg_loss
|
141 |
+
mesh.tsdf_v = get_defomed_verts(v_pos, v_attrs[:, 1:4], self.res)
|
142 |
+
mesh.tsdf_s = v_attrs[:, 0]
|
143 |
+
return mesh
|