Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -96,6 +96,7 @@ def generate_flux_image(
|
|
96 |
progress: gr.Progress = gr.Progress(track_tqdm=True),
|
97 |
) -> Tuple[Image.Image, Image.Image]:
|
98 |
"""Generate image using Flux pipeline"""
|
|
|
99 |
if randomize_seed:
|
100 |
seed = random.randint(0, MAX_SEED)
|
101 |
generator = torch.Generator(device=device).manual_seed(seed)
|
@@ -116,7 +117,7 @@ def generate_flux_image(
|
|
116 |
filepath = os.path.join(SAVE_DIR, filename)
|
117 |
image.save(filepath)
|
118 |
# Devolver la imagen generada y el estado temporal (misma imagen)
|
119 |
-
return image
|
120 |
|
121 |
@spaces.GPU
|
122 |
def image_to_3d(
|
@@ -231,10 +232,6 @@ with gr.Blocks() as demo:
|
|
231 |
mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
|
232 |
texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
|
233 |
|
234 |
-
# Estado para almacenar la imagen generada temporalmente
|
235 |
-
temp_image_state = gr.State()
|
236 |
-
output_buf = gr.State()
|
237 |
-
|
238 |
# Event handlers
|
239 |
demo.load(start_session)
|
240 |
demo.unload(end_session)
|
@@ -243,7 +240,7 @@ with gr.Blocks() as demo:
|
|
243 |
generate_image_btn.click(
|
244 |
generate_flux_image,
|
245 |
inputs=[prompt, seed, randomize_seed, width, height, guidance_scale],
|
246 |
-
outputs=[generated_image
|
247 |
).then(
|
248 |
lambda: gr.Button(interactive=True), # Habilitar el bot贸n "Generar Video"
|
249 |
outputs=[generate_video_btn],
|
@@ -251,6 +248,10 @@ with gr.Blocks() as demo:
|
|
251 |
|
252 |
# Generar video
|
253 |
generate_video_btn.click(
|
|
|
|
|
|
|
|
|
254 |
image_to_3d,
|
255 |
inputs=[
|
256 |
generated_image,
|
|
|
96 |
progress: gr.Progress = gr.Progress(track_tqdm=True),
|
97 |
) -> Tuple[Image.Image, Image.Image]:
|
98 |
"""Generate image using Flux pipeline"""
|
99 |
+
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
100 |
if randomize_seed:
|
101 |
seed = random.randint(0, MAX_SEED)
|
102 |
generator = torch.Generator(device=device).manual_seed(seed)
|
|
|
117 |
filepath = os.path.join(SAVE_DIR, filename)
|
118 |
image.save(filepath)
|
119 |
# Devolver la imagen generada y el estado temporal (misma imagen)
|
120 |
+
return image
|
121 |
|
122 |
@spaces.GPU
|
123 |
def image_to_3d(
|
|
|
232 |
mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
|
233 |
texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
|
234 |
|
|
|
|
|
|
|
|
|
235 |
# Event handlers
|
236 |
demo.load(start_session)
|
237 |
demo.unload(end_session)
|
|
|
240 |
generate_image_btn.click(
|
241 |
generate_flux_image,
|
242 |
inputs=[prompt, seed, randomize_seed, width, height, guidance_scale],
|
243 |
+
outputs=[generated_image]
|
244 |
).then(
|
245 |
lambda: gr.Button(interactive=True), # Habilitar el bot贸n "Generar Video"
|
246 |
outputs=[generate_video_btn],
|
|
|
248 |
|
249 |
# Generar video
|
250 |
generate_video_btn.click(
|
251 |
+
get_seed,
|
252 |
+
inputs=[randomize_seed, seed],
|
253 |
+
outputs=[seed],
|
254 |
+
).then(
|
255 |
image_to_3d,
|
256 |
inputs=[
|
257 |
generated_image,
|