Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -7,7 +7,6 @@ import random
|
|
7 |
import uuid
|
8 |
from datetime import datetime
|
9 |
from diffusers import DiffusionPipeline
|
10 |
-
|
11 |
os.environ['SPCONV_ALGO'] = 'native'
|
12 |
from typing import *
|
13 |
import torch
|
@@ -18,16 +17,14 @@ from PIL import Image
|
|
18 |
from trellis.pipelines import TrellisImageTo3DPipeline
|
19 |
from trellis.representations import Gaussian, MeshExtractResult
|
20 |
from trellis.utils import render_utils, postprocessing_utils
|
21 |
-
|
22 |
NUM_INFERENCE_STEPS = 8
|
23 |
-
|
24 |
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
|
25 |
-
|
26 |
# Constants
|
27 |
MAX_SEED = np.iinfo(np.int32).max
|
28 |
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
|
29 |
os.makedirs(TMP_DIR, exist_ok=True)
|
30 |
|
|
|
31 |
def start_session(req: gr.Request):
|
32 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
33 |
os.makedirs(user_dir, exist_ok=True)
|
@@ -70,12 +67,10 @@ def unpack_state(state: dict) -> Tuple[Gaussian, edict]:
|
|
70 |
gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda')
|
71 |
gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda')
|
72 |
gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda')
|
73 |
-
|
74 |
mesh = edict(
|
75 |
vertices=torch.tensor(state['mesh']['vertices'], device='cuda'),
|
76 |
faces=torch.tensor(state['mesh']['faces'], device='cuda'),
|
77 |
)
|
78 |
-
|
79 |
return gs, mesh
|
80 |
|
81 |
def get_seed(randomize_seed: bool, seed: int) -> int:
|
@@ -106,16 +101,13 @@ def generate_flux_image(
|
|
106 |
generator=generator,
|
107 |
).images[0]
|
108 |
|
109 |
-
# Guardar la imagen en el directorio temporal
|
110 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
111 |
os.makedirs(user_dir, exist_ok=True)
|
112 |
-
|
113 |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
114 |
unique_id = str(uuid.uuid4())[:8]
|
115 |
filename = f"{timestamp}_{unique_id}.png"
|
116 |
filepath = os.path.join(user_dir, filename)
|
117 |
image.save(filepath)
|
118 |
-
|
119 |
return image
|
120 |
|
121 |
@spaces.GPU
|
@@ -167,23 +159,16 @@ def extract_glb(
|
|
167 |
torch.cuda.empty_cache()
|
168 |
return glb_path, glb_path
|
169 |
|
170 |
-
|
171 |
-
def extract_gaussian(state: dict, req: gr.Request) -> Tuple[str, str]:
|
172 |
-
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
173 |
-
gs, _ = unpack_state(state)
|
174 |
-
gaussian_path = os.path.join(user_dir, 'sample.ply')
|
175 |
-
gs.save_ply(gaussian_path)
|
176 |
-
torch.cuda.empty_cache()
|
177 |
-
return gaussian_path, gaussian_path
|
178 |
-
|
179 |
-
# Gradio Interface
|
180 |
with gr.Blocks() as demo:
|
181 |
gr.Markdown("""
|
182 |
-
|
183 |
-
|
184 |
-
|
|
|
|
|
185 |
""")
|
186 |
-
|
187 |
with gr.Row():
|
188 |
with gr.Column():
|
189 |
# Flux image generation inputs
|
@@ -196,25 +181,20 @@ with gr.Blocks() as demo:
|
|
196 |
height = gr.Slider(512, 1024, label="Height", value=1024, step=16)
|
197 |
with gr.Row():
|
198 |
guidance_scale = gr.Slider(0.0, 10.0, label="Guidance Scale", value=3.5, step=0.1)
|
199 |
-
|
200 |
# Botones separados
|
201 |
generate_image_btn = gr.Button("Generar Imagen")
|
202 |
generate_video_btn = gr.Button("Generar Video", interactive=False)
|
203 |
-
|
204 |
with gr.Column():
|
205 |
generated_image = gr.Image(label="Generated Asset", type="pil")
|
206 |
video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True)
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
with gr.Row():
|
211 |
extract_glb_btn = gr.Button("Extract GLB", interactive=False)
|
212 |
-
|
213 |
-
|
214 |
with gr.Row():
|
215 |
download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
|
216 |
-
|
217 |
-
|
218 |
# Variables adicionales para la generaci贸n 3D
|
219 |
with gr.Accordion("3D Generation Settings", open=False):
|
220 |
gr.Markdown("Stage 1: Sparse Structure Generation")
|
@@ -225,18 +205,18 @@ with gr.Blocks() as demo:
|
|
225 |
with gr.Row():
|
226 |
slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1)
|
227 |
slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
|
228 |
-
|
229 |
# Variables para la extracci贸n de GLB
|
230 |
with gr.Accordion("GLB Extraction Settings", open=False):
|
231 |
mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
|
232 |
texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
|
233 |
-
|
234 |
output_buf = gr.State()
|
235 |
|
236 |
# Event handlers
|
237 |
demo.load(start_session)
|
238 |
demo.unload(end_session)
|
239 |
-
|
240 |
# Generar imagen
|
241 |
generate_image_btn.click(
|
242 |
generate_flux_image,
|
@@ -246,7 +226,7 @@ with gr.Blocks() as demo:
|
|
246 |
lambda: gr.Button(interactive=True),
|
247 |
outputs=[generate_video_btn],
|
248 |
)
|
249 |
-
|
250 |
# Generar video
|
251 |
generate_video_btn.click(
|
252 |
get_seed,
|
@@ -268,13 +248,13 @@ with gr.Blocks() as demo:
|
|
268 |
],
|
269 |
outputs=[output_buf, video_output],
|
270 |
).then(
|
271 |
-
lambda:
|
272 |
-
outputs=[extract_glb_btn
|
273 |
)
|
274 |
-
|
275 |
video_output.clear(
|
276 |
-
lambda:
|
277 |
-
outputs=[extract_glb_btn
|
278 |
)
|
279 |
|
280 |
# Extraer GLB
|
@@ -286,22 +266,12 @@ with gr.Blocks() as demo:
|
|
286 |
lambda: gr.Button(interactive=True),
|
287 |
outputs=[download_glb],
|
288 |
)
|
289 |
-
|
290 |
-
# Extraer Gaussian
|
291 |
-
extract_gs_btn.click(
|
292 |
-
extract_gaussian,
|
293 |
-
inputs=[output_buf],
|
294 |
-
outputs=[model_output, download_gs],
|
295 |
-
).then(
|
296 |
-
lambda: gr.Button(interactive=True),
|
297 |
-
outputs=[download_gs],
|
298 |
-
)
|
299 |
-
|
300 |
model_output.clear(
|
301 |
lambda: gr.Button(interactive=False),
|
302 |
outputs=[download_glb],
|
303 |
)
|
304 |
-
|
305 |
# Initialize both pipelines
|
306 |
if __name__ == "__main__":
|
307 |
from diffusers import FluxTransformer2DModel, FluxPipeline, BitsAndBytesConfig, GGUFQuantizationConfig
|
@@ -310,23 +280,26 @@ if __name__ == "__main__":
|
|
310 |
# Initialize Flux pipeline
|
311 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
312 |
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
|
313 |
-
|
314 |
dtype = torch.bfloat16
|
315 |
file_url = "https://huggingface.co/gokaygokay/flux-game/blob/main/hyperflux_00001_.q8_0.gguf"
|
316 |
file_url = file_url.replace("/resolve/main/", "/blob/main/").replace("?download=true", "")
|
317 |
single_file_base_model = "camenduru/FLUX.1-dev-diffusers"
|
318 |
quantization_config_tf = BitsAndBytesConfigTF(load_in_8bit=True, bnb_8bit_compute_dtype=torch.bfloat16)
|
319 |
text_encoder_2 = T5EncoderModel.from_pretrained(single_file_base_model, subfolder="text_encoder_2", torch_dtype=dtype, config=single_file_base_model, quantization_config=quantization_config_tf, token=huggingface_token)
|
|
|
320 |
if ".gguf" in file_url:
|
321 |
transformer = FluxTransformer2DModel.from_single_file(file_url, subfolder="transformer", quantization_config=GGUFQuantizationConfig(compute_dtype=dtype), torch_dtype=dtype, config=single_file_base_model)
|
322 |
else:
|
323 |
quantization_config = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_use_double_quant=True, bnb_4bit_compute_dtype=torch.bfloat16, token=huggingface_token)
|
324 |
transformer = FluxTransformer2DModel.from_single_file(file_url, subfolder="transformer", torch_dtype=dtype, config=single_file_base_model, quantization_config=quantization_config, token=huggingface_token)
|
|
|
325 |
flux_pipeline = FluxPipeline.from_pretrained(single_file_base_model, transformer=transformer, text_encoder_2=text_encoder_2, torch_dtype=dtype, token=huggingface_token)
|
326 |
flux_pipeline.to("cuda")
|
|
|
327 |
# Initialize Trellis pipeline
|
328 |
trellis_pipeline = TrellisImageTo3DPipeline.from_pretrained("cavargas10/TRELLIS")
|
329 |
trellis_pipeline.cuda()
|
|
|
330 |
try:
|
331 |
trellis_pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8)))
|
332 |
except:
|
|
|
7 |
import uuid
|
8 |
from datetime import datetime
|
9 |
from diffusers import DiffusionPipeline
|
|
|
10 |
os.environ['SPCONV_ALGO'] = 'native'
|
11 |
from typing import *
|
12 |
import torch
|
|
|
17 |
from trellis.pipelines import TrellisImageTo3DPipeline
|
18 |
from trellis.representations import Gaussian, MeshExtractResult
|
19 |
from trellis.utils import render_utils, postprocessing_utils
|
|
|
20 |
NUM_INFERENCE_STEPS = 8
|
|
|
21 |
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
|
|
|
22 |
# Constants
|
23 |
MAX_SEED = np.iinfo(np.int32).max
|
24 |
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
|
25 |
os.makedirs(TMP_DIR, exist_ok=True)
|
26 |
|
27 |
+
# Funciones auxiliares
|
28 |
def start_session(req: gr.Request):
|
29 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
30 |
os.makedirs(user_dir, exist_ok=True)
|
|
|
67 |
gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda')
|
68 |
gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda')
|
69 |
gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda')
|
|
|
70 |
mesh = edict(
|
71 |
vertices=torch.tensor(state['mesh']['vertices'], device='cuda'),
|
72 |
faces=torch.tensor(state['mesh']['faces'], device='cuda'),
|
73 |
)
|
|
|
74 |
return gs, mesh
|
75 |
|
76 |
def get_seed(randomize_seed: bool, seed: int) -> int:
|
|
|
101 |
generator=generator,
|
102 |
).images[0]
|
103 |
|
|
|
104 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
105 |
os.makedirs(user_dir, exist_ok=True)
|
|
|
106 |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
107 |
unique_id = str(uuid.uuid4())[:8]
|
108 |
filename = f"{timestamp}_{unique_id}.png"
|
109 |
filepath = os.path.join(user_dir, filename)
|
110 |
image.save(filepath)
|
|
|
111 |
return image
|
112 |
|
113 |
@spaces.GPU
|
|
|
159 |
torch.cuda.empty_cache()
|
160 |
return glb_path, glb_path
|
161 |
|
162 |
+
# Interfaz Gradio
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
163 |
with gr.Blocks() as demo:
|
164 |
gr.Markdown("""
|
165 |
+
# UTPL - Conversi贸n de Texto a Imagen a objetos 3D usando IA
|
166 |
+
### Tesis: *"Objetos tridimensionales creados por IA: Innovaci贸n en entornos virtuales"*
|
167 |
+
**Autor:** Carlos Vargas
|
168 |
+
**Base t茅cnica:** Adaptaci贸n de [TRELLIS](https://trellis3d.github.io/) y Flux
|
169 |
+
**Prop贸sito educativo:** Demostraciones acad茅micas e Investigaci贸n en modelado 3D autom谩tico
|
170 |
""")
|
171 |
+
|
172 |
with gr.Row():
|
173 |
with gr.Column():
|
174 |
# Flux image generation inputs
|
|
|
181 |
height = gr.Slider(512, 1024, label="Height", value=1024, step=16)
|
182 |
with gr.Row():
|
183 |
guidance_scale = gr.Slider(0.0, 10.0, label="Guidance Scale", value=3.5, step=0.1)
|
|
|
184 |
# Botones separados
|
185 |
generate_image_btn = gr.Button("Generar Imagen")
|
186 |
generate_video_btn = gr.Button("Generar Video", interactive=False)
|
|
|
187 |
with gr.Column():
|
188 |
generated_image = gr.Image(label="Generated Asset", type="pil")
|
189 |
video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True)
|
190 |
+
model_output = LitModel3D(label="Extracted GLB", exposure=8.0, height=400)
|
191 |
+
|
|
|
192 |
with gr.Row():
|
193 |
extract_glb_btn = gr.Button("Extract GLB", interactive=False)
|
194 |
+
|
|
|
195 |
with gr.Row():
|
196 |
download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
|
197 |
+
|
|
|
198 |
# Variables adicionales para la generaci贸n 3D
|
199 |
with gr.Accordion("3D Generation Settings", open=False):
|
200 |
gr.Markdown("Stage 1: Sparse Structure Generation")
|
|
|
205 |
with gr.Row():
|
206 |
slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1)
|
207 |
slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
|
208 |
+
|
209 |
# Variables para la extracci贸n de GLB
|
210 |
with gr.Accordion("GLB Extraction Settings", open=False):
|
211 |
mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
|
212 |
texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
|
213 |
+
|
214 |
output_buf = gr.State()
|
215 |
|
216 |
# Event handlers
|
217 |
demo.load(start_session)
|
218 |
demo.unload(end_session)
|
219 |
+
|
220 |
# Generar imagen
|
221 |
generate_image_btn.click(
|
222 |
generate_flux_image,
|
|
|
226 |
lambda: gr.Button(interactive=True),
|
227 |
outputs=[generate_video_btn],
|
228 |
)
|
229 |
+
|
230 |
# Generar video
|
231 |
generate_video_btn.click(
|
232 |
get_seed,
|
|
|
248 |
],
|
249 |
outputs=[output_buf, video_output],
|
250 |
).then(
|
251 |
+
lambda: gr.Button(interactive=True),
|
252 |
+
outputs=[extract_glb_btn],
|
253 |
)
|
254 |
+
|
255 |
video_output.clear(
|
256 |
+
lambda: gr.Button(interactive=False),
|
257 |
+
outputs=[extract_glb_btn],
|
258 |
)
|
259 |
|
260 |
# Extraer GLB
|
|
|
266 |
lambda: gr.Button(interactive=True),
|
267 |
outputs=[download_glb],
|
268 |
)
|
269 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
270 |
model_output.clear(
|
271 |
lambda: gr.Button(interactive=False),
|
272 |
outputs=[download_glb],
|
273 |
)
|
274 |
+
|
275 |
# Initialize both pipelines
|
276 |
if __name__ == "__main__":
|
277 |
from diffusers import FluxTransformer2DModel, FluxPipeline, BitsAndBytesConfig, GGUFQuantizationConfig
|
|
|
280 |
# Initialize Flux pipeline
|
281 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
282 |
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
|
|
|
283 |
dtype = torch.bfloat16
|
284 |
file_url = "https://huggingface.co/gokaygokay/flux-game/blob/main/hyperflux_00001_.q8_0.gguf"
|
285 |
file_url = file_url.replace("/resolve/main/", "/blob/main/").replace("?download=true", "")
|
286 |
single_file_base_model = "camenduru/FLUX.1-dev-diffusers"
|
287 |
quantization_config_tf = BitsAndBytesConfigTF(load_in_8bit=True, bnb_8bit_compute_dtype=torch.bfloat16)
|
288 |
text_encoder_2 = T5EncoderModel.from_pretrained(single_file_base_model, subfolder="text_encoder_2", torch_dtype=dtype, config=single_file_base_model, quantization_config=quantization_config_tf, token=huggingface_token)
|
289 |
+
|
290 |
if ".gguf" in file_url:
|
291 |
transformer = FluxTransformer2DModel.from_single_file(file_url, subfolder="transformer", quantization_config=GGUFQuantizationConfig(compute_dtype=dtype), torch_dtype=dtype, config=single_file_base_model)
|
292 |
else:
|
293 |
quantization_config = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_use_double_quant=True, bnb_4bit_compute_dtype=torch.bfloat16, token=huggingface_token)
|
294 |
transformer = FluxTransformer2DModel.from_single_file(file_url, subfolder="transformer", torch_dtype=dtype, config=single_file_base_model, quantization_config=quantization_config, token=huggingface_token)
|
295 |
+
|
296 |
flux_pipeline = FluxPipeline.from_pretrained(single_file_base_model, transformer=transformer, text_encoder_2=text_encoder_2, torch_dtype=dtype, token=huggingface_token)
|
297 |
flux_pipeline.to("cuda")
|
298 |
+
|
299 |
# Initialize Trellis pipeline
|
300 |
trellis_pipeline = TrellisImageTo3DPipeline.from_pretrained("cavargas10/TRELLIS")
|
301 |
trellis_pipeline.cuda()
|
302 |
+
|
303 |
try:
|
304 |
trellis_pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8)))
|
305 |
except:
|