Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -176,6 +176,7 @@ def extract_gaussian(state: dict, req: gr.Request) -> Tuple[str, str]:
|
|
176 |
torch.cuda.empty_cache()
|
177 |
return gaussian_path, gaussian_path
|
178 |
|
|
|
179 |
# Gradio Interface
|
180 |
with gr.Blocks() as demo:
|
181 |
gr.Markdown("""
|
@@ -190,7 +191,6 @@ with gr.Blocks() as demo:
|
|
190 |
with gr.Column():
|
191 |
# Flux image generation inputs
|
192 |
prompt = gr.Text(label="Prompt", placeholder="Enter your game asset description")
|
193 |
-
|
194 |
with gr.Accordion("Generation Settings", open=False):
|
195 |
seed = gr.Slider(0, MAX_SEED, label="Seed", value=42, step=1)
|
196 |
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
|
@@ -199,64 +199,54 @@ with gr.Blocks() as demo:
|
|
199 |
height = gr.Slider(512, 1024, label="Height", value=1024, step=16)
|
200 |
with gr.Row():
|
201 |
guidance_scale = gr.Slider(0.0, 10.0, label="Guidance Scale", value=3.5, step=0.1)
|
202 |
-
# num_inference_steps = gr.Slider(1, 50, label="Steps", value=8, step=1)
|
203 |
-
|
204 |
-
with gr.Accordion("3D Generation Settings", open=False):
|
205 |
-
gr.Markdown("Stage 1: Sparse Structure Generation")
|
206 |
-
with gr.Row():
|
207 |
-
ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
|
208 |
-
ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
|
209 |
-
gr.Markdown("Stage 2: Structured Latent Generation")
|
210 |
-
with gr.Row():
|
211 |
-
slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1)
|
212 |
-
slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
|
213 |
-
|
214 |
-
generate_btn = gr.Button("Generate")
|
215 |
-
|
216 |
-
with gr.Accordion("GLB Extraction Settings", open=False):
|
217 |
-
mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
|
218 |
-
texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
|
219 |
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
|
224 |
with gr.Column():
|
225 |
generated_image = gr.Image(label="Generated Asset", type="pil")
|
226 |
-
|
227 |
-
with gr.Column():
|
228 |
-
|
229 |
video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True)
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
236 |
output_buf = gr.State()
|
237 |
|
238 |
# Event handlers
|
239 |
demo.load(start_session)
|
240 |
demo.unload(end_session)
|
241 |
|
242 |
-
|
|
|
243 |
generate_flux_image,
|
244 |
inputs=[prompt, seed, randomize_seed, width, height, guidance_scale],
|
245 |
-
outputs=[generated_image],
|
246 |
).then(
|
|
|
|
|
|
|
|
|
|
|
|
|
247 |
image_to_3d,
|
248 |
-
inputs=[
|
249 |
outputs=[output_buf, video_output],
|
250 |
).then(
|
251 |
lambda: tuple([gr.Button(interactive=True), gr.Button(interactive=True)]),
|
252 |
outputs=[extract_glb_btn, extract_gs_btn],
|
253 |
)
|
254 |
|
255 |
-
|
256 |
-
lambda: tuple([gr.Button(interactive=False), gr.Button(interactive=False)]),
|
257 |
-
outputs=[extract_glb_btn, extract_gs_btn],
|
258 |
-
)
|
259 |
-
|
260 |
extract_glb_btn.click(
|
261 |
extract_glb,
|
262 |
inputs=[output_buf, mesh_simplify, texture_size],
|
@@ -265,7 +255,8 @@ with gr.Blocks() as demo:
|
|
265 |
lambda: gr.Button(interactive=True),
|
266 |
outputs=[download_glb],
|
267 |
)
|
268 |
-
|
|
|
269 |
extract_gs_btn.click(
|
270 |
extract_gaussian,
|
271 |
inputs=[output_buf],
|
@@ -275,11 +266,6 @@ with gr.Blocks() as demo:
|
|
275 |
outputs=[download_gs],
|
276 |
)
|
277 |
|
278 |
-
model_output.clear(
|
279 |
-
lambda: gr.Button(interactive=False),
|
280 |
-
outputs=[download_glb],
|
281 |
-
)
|
282 |
-
|
283 |
# Initialize both pipelines
|
284 |
if __name__ == "__main__":
|
285 |
from diffusers import FluxTransformer2DModel, FluxPipeline, BitsAndBytesConfig, GGUFQuantizationConfig
|
|
|
176 |
torch.cuda.empty_cache()
|
177 |
return gaussian_path, gaussian_path
|
178 |
|
179 |
+
# Gradio Interface
|
180 |
# Gradio Interface
|
181 |
with gr.Blocks() as demo:
|
182 |
gr.Markdown("""
|
|
|
191 |
with gr.Column():
|
192 |
# Flux image generation inputs
|
193 |
prompt = gr.Text(label="Prompt", placeholder="Enter your game asset description")
|
|
|
194 |
with gr.Accordion("Generation Settings", open=False):
|
195 |
seed = gr.Slider(0, MAX_SEED, label="Seed", value=42, step=1)
|
196 |
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
|
|
|
199 |
height = gr.Slider(512, 1024, label="Height", value=1024, step=16)
|
200 |
with gr.Row():
|
201 |
guidance_scale = gr.Slider(0.0, 10.0, label="Guidance Scale", value=3.5, step=0.1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
202 |
|
203 |
+
# Botones separados
|
204 |
+
generate_image_btn = gr.Button("Generar Imagen")
|
205 |
+
generate_video_btn = gr.Button("Generar Video", interactive=False)
|
206 |
|
207 |
with gr.Column():
|
208 |
generated_image = gr.Image(label="Generated Asset", type="pil")
|
|
|
|
|
|
|
209 |
video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True)
|
210 |
+
|
211 |
+
model_output = LitModel3D(label="Extracted GLB/Gaussian", exposure=8.0, height=400)
|
212 |
+
|
213 |
+
with gr.Row():
|
214 |
+
extract_glb_btn = gr.Button("Extract GLB", interactive=False)
|
215 |
+
extract_gs_btn = gr.Button("Extract Gaussian", interactive=False)
|
216 |
+
|
217 |
+
with gr.Row():
|
218 |
+
download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
|
219 |
+
download_gs = gr.DownloadButton(label="Download Gaussian", interactive=False)
|
220 |
+
|
221 |
+
# Estado para almacenar la imagen generada temporalmente
|
222 |
+
temp_image_state = gr.State()
|
223 |
output_buf = gr.State()
|
224 |
|
225 |
# Event handlers
|
226 |
demo.load(start_session)
|
227 |
demo.unload(end_session)
|
228 |
|
229 |
+
# Generar imagen
|
230 |
+
generate_image_btn.click(
|
231 |
generate_flux_image,
|
232 |
inputs=[prompt, seed, randomize_seed, width, height, guidance_scale],
|
233 |
+
outputs=[generated_image, temp_image_state], # Almacenar la imagen en el estado temporal
|
234 |
).then(
|
235 |
+
lambda: gr.Button(interactive=True), # Habilitar el bot贸n "Generar Video"
|
236 |
+
outputs=[generate_video_btn],
|
237 |
+
)
|
238 |
+
|
239 |
+
# Generar video
|
240 |
+
generate_video_btn.click(
|
241 |
image_to_3d,
|
242 |
+
inputs=[temp_image_state, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps],
|
243 |
outputs=[output_buf, video_output],
|
244 |
).then(
|
245 |
lambda: tuple([gr.Button(interactive=True), gr.Button(interactive=True)]),
|
246 |
outputs=[extract_glb_btn, extract_gs_btn],
|
247 |
)
|
248 |
|
249 |
+
# Extraer GLB
|
|
|
|
|
|
|
|
|
250 |
extract_glb_btn.click(
|
251 |
extract_glb,
|
252 |
inputs=[output_buf, mesh_simplify, texture_size],
|
|
|
255 |
lambda: gr.Button(interactive=True),
|
256 |
outputs=[download_glb],
|
257 |
)
|
258 |
+
|
259 |
+
# Extraer Gaussian
|
260 |
extract_gs_btn.click(
|
261 |
extract_gaussian,
|
262 |
inputs=[output_buf],
|
|
|
266 |
outputs=[download_gs],
|
267 |
)
|
268 |
|
|
|
|
|
|
|
|
|
|
|
269 |
# Initialize both pipelines
|
270 |
if __name__ == "__main__":
|
271 |
from diffusers import FluxTransformer2DModel, FluxPipeline, BitsAndBytesConfig, GGUFQuantizationConfig
|