cchaun's picture
improve model accuracy
a2148ac
# -*- coding: UTF-8 -*-
import gradio as gr
import torch, torchaudio
from timeit import default_timer as timer
from data_setups import audio_preprocess, resample
device = "cuda" if torch.cuda.is_available() else "cpu"
SAMPLE_RATE = 44100
AUDIO_LEN = 2.90
model = torch.load("models/torch_efficientnet_fold2_CNN.pth", map_location=torch.device('cpu'))
CHINESE_LABELS = [
"大提琴", "單簧管", "長笛", "民謠吉他", "電吉他", "風琴", "鋼琴", "薩克斯風", "喇叭", "小提琴", "人聲"
]
LABELS = [
"Cello", "Clarinet", "Flute", "Acoustic Guitar", "Electric Guitar", "Organ", "Piano", "Saxophone", "Trumpet", "Violin", "Voice"
]
example_list = [
"samples/guitar_acoustic.wav",
"samples/piano.wav",
"samples/violin.wav",
"samples/flute.wav"
]
def predict(audio_path):
start_time = timer()
wavform, sample_rate = torchaudio.load(audio_path)
wav = resample(wavform, sample_rate, SAMPLE_RATE)
if len(wav) > int(AUDIO_LEN * SAMPLE_RATE):
wav = wav[:int(AUDIO_LEN * SAMPLE_RATE)]
else:
print(f"input length {len(wav)} too small!, need over {int(AUDIO_LEN * SAMPLE_RATE)}")
return
# input Preprocessing
img = audio_preprocess(wav, SAMPLE_RATE).unsqueeze(0)
model.eval()
with torch.inference_mode():
pred_probs = torch.softmax(model(img), dim=1)
pred_labels_and_probs = {CHINESE_LABELS[i]: float(pred_probs[0][i]) for i in range(len(CHINESE_LABELS))}
pred_time = round(timer() - start_time, 5)
return pred_labels_and_probs, pred_time
title = "樂器辨識🎺🎸🎹🎻"
description = "使用IRMAS資料集訓練的深度學習模型,可辨識11種不同樂器,包含「大提琴, 單簧管, 長笛, 民謠吉他, 電吉他, 風琴, 鋼琴, 薩克斯風, 喇叭, 小提琴, 人聲」"
article = ""
demo = gr.Interface(fn=predict,
inputs=gr.Audio(type="filepath"),
outputs=[gr.Label(num_top_classes=11, label="Predictions"),
gr.Number(label="Prediction time (s)")],
examples=example_list,
title=title,
description=description,
article=article)
demo.launch(debug=False)