# -*- coding: UTF-8 -*- import gradio as gr import torch, torchaudio from timeit import default_timer as timer from data_setups import audio_preprocess, resample device = "cuda" if torch.cuda.is_available() else "cpu" SAMPLE_RATE = 44100 AUDIO_LEN = 2.90 model = torch.load("models/torch_efficientnet_fold2_CNN.pth", map_location=torch.device('cpu')) CHINESE_LABELS = [ "大提琴", "單簧管", "長笛", "民謠吉他", "電吉他", "風琴", "鋼琴", "薩克斯風", "喇叭", "小提琴", "人聲" ] LABELS = [ "Cello", "Clarinet", "Flute", "Acoustic Guitar", "Electric Guitar", "Organ", "Piano", "Saxophone", "Trumpet", "Violin", "Voice" ] example_list = [ "samples/guitar_acoustic.wav", "samples/piano.wav", "samples/violin.wav", "samples/flute.wav" ] def predict(audio_path): start_time = timer() wavform, sample_rate = torchaudio.load(audio_path) wav = resample(wavform, sample_rate, SAMPLE_RATE) if len(wav) > int(AUDIO_LEN * SAMPLE_RATE): wav = wav[:int(AUDIO_LEN * SAMPLE_RATE)] else: print(f"input length {len(wav)} too small!, need over {int(AUDIO_LEN * SAMPLE_RATE)}") return # input Preprocessing img = audio_preprocess(wav, SAMPLE_RATE).unsqueeze(0) model.eval() with torch.inference_mode(): pred_probs = torch.softmax(model(img), dim=1) pred_labels_and_probs = {CHINESE_LABELS[i]: float(pred_probs[0][i]) for i in range(len(CHINESE_LABELS))} pred_time = round(timer() - start_time, 5) return pred_labels_and_probs, pred_time title = "樂器辨識🎺🎸🎹🎻" description = "使用IRMAS資料集訓練的深度學習模型,可辨識11種不同樂器,包含「大提琴, 單簧管, 長笛, 民謠吉他, 電吉他, 風琴, 鋼琴, 薩克斯風, 喇叭, 小提琴, 人聲」" article = "" demo = gr.Interface(fn=predict, inputs=gr.Audio(type="filepath"), outputs=[gr.Label(num_top_classes=11, label="Predictions"), gr.Number(label="Prediction time (s)")], examples=example_list, title=title, description=description, article=article) demo.launch(debug=False)