Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,294 @@
|
|
1 |
-
import
|
2 |
-
from
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
for message in client.chat_completion(
|
31 |
-
messages,
|
32 |
-
max_tokens=max_tokens,
|
33 |
-
stream=True,
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
-
|
39 |
-
response += token
|
40 |
-
yield response
|
41 |
-
|
42 |
-
|
43 |
-
"""
|
44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
-
"""
|
46 |
-
demo = gr.ChatInterface(
|
47 |
-
respond,
|
48 |
-
additional_inputs=[
|
49 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
-
],
|
60 |
)
|
61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
-
|
64 |
-
|
|
|
1 |
+
import os
|
2 |
+
from dotenv import find_dotenv, load_dotenv
|
3 |
+
import streamlit as st
|
4 |
+
from groq import Groq
|
5 |
+
import base64
|
6 |
+
|
7 |
+
# Load environment variables
|
8 |
+
load_dotenv(find_dotenv())
|
9 |
+
|
10 |
+
# Function to encode the image to a base64 string
|
11 |
+
def encode_image(uploaded_file):
|
12 |
+
"""
|
13 |
+
Encodes an uploaded image file into a base64 string.
|
14 |
+
Args:
|
15 |
+
uploaded_file: The file-like object uploaded via Streamlit.
|
16 |
+
Returns:
|
17 |
+
str: The base64 encoded string of the image.
|
18 |
+
"""
|
19 |
+
return base64.b64encode(uploaded_file.read()).decode('utf-8')
|
20 |
+
|
21 |
+
# Initialize the Groq client using the API key from the environment variables
|
22 |
+
client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
|
23 |
+
|
24 |
+
# Set up Streamlit page configuration
|
25 |
+
st.set_page_config(
|
26 |
+
page_icon="📃",
|
27 |
+
layout="wide",
|
28 |
+
page_title="Groq & LLaMA3x Chat Bot"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
)
|
30 |
|
31 |
+
# App Title
|
32 |
+
st.title("Groq Chat with LLaMA3x")
|
33 |
+
|
34 |
+
# Cache the model fetching function to improve performance
|
35 |
+
@st.cache_data
|
36 |
+
def fetch_available_models():
|
37 |
+
"""
|
38 |
+
Fetches the available models from the Groq API.
|
39 |
+
Returns a list of models or an empty list if there's an error.
|
40 |
+
"""
|
41 |
+
try:
|
42 |
+
models_response = client.models.list()
|
43 |
+
return models_response.data
|
44 |
+
except Exception as e:
|
45 |
+
st.error(f"Error fetching models: {e}")
|
46 |
+
return []
|
47 |
+
|
48 |
+
# Load available models and filter them
|
49 |
+
available_models = fetch_available_models()
|
50 |
+
filtered_models = [
|
51 |
+
model for model in available_models if 'llama' in model.id
|
52 |
+
]
|
53 |
+
|
54 |
+
# Prepare a dictionary of model metadata
|
55 |
+
models = {
|
56 |
+
model.id: {
|
57 |
+
"name": model.id,
|
58 |
+
"tokens": 4000,
|
59 |
+
"developer": model.owned_by,
|
60 |
+
}
|
61 |
+
for model in filtered_models
|
62 |
+
}
|
63 |
+
|
64 |
+
# Initialize session state variables
|
65 |
+
if "messages" not in st.session_state:
|
66 |
+
st.session_state.messages = []
|
67 |
+
|
68 |
+
if "selected_model" not in st.session_state:
|
69 |
+
st.session_state.selected_model = None
|
70 |
+
|
71 |
+
# Sidebar: Controls
|
72 |
+
with st.sidebar:
|
73 |
+
|
74 |
+
# Powered by Groq logo
|
75 |
+
st.markdown(
|
76 |
+
"""
|
77 |
+
<a href="https://groq.com" target="_blank" rel="noopener noreferrer">
|
78 |
+
<img
|
79 |
+
src="https://groq.com/wp-content/uploads/2024/03/PBG-mark1-color.svg"
|
80 |
+
alt="Powered by Groq for fast inference."
|
81 |
+
width="100%"
|
82 |
+
/>
|
83 |
+
</a>
|
84 |
+
""",
|
85 |
+
unsafe_allow_html=True
|
86 |
+
)
|
87 |
+
st.markdown("---")
|
88 |
+
|
89 |
+
# Define a function to clear messages when the model changes
|
90 |
+
def reset_chat_on_model_change():
|
91 |
+
st.session_state.messages = []
|
92 |
+
st.session_state.image_used = False
|
93 |
+
uploaded_file = None
|
94 |
+
base64_image = None
|
95 |
+
|
96 |
+
# Model selection dropdown
|
97 |
+
if models:
|
98 |
+
model_option = st.selectbox(
|
99 |
+
"Choose a model:",
|
100 |
+
options=list(models.keys()),
|
101 |
+
format_func=lambda x: f"{models[x]['name']} ({models[x]['developer']})",
|
102 |
+
on_change=reset_chat_on_model_change, # Reset chat when model changes
|
103 |
+
)
|
104 |
+
else:
|
105 |
+
st.warning("No available models to select.")
|
106 |
+
model_option = None
|
107 |
+
|
108 |
+
# Token limit slider
|
109 |
+
if models:
|
110 |
+
max_tokens_range = models[model_option]["tokens"]
|
111 |
+
max_tokens = st.slider(
|
112 |
+
"Max Tokens:",
|
113 |
+
min_value=200,
|
114 |
+
max_value=max_tokens_range,
|
115 |
+
value=max(100, int(max_tokens_range * 0.5)),
|
116 |
+
step=256,
|
117 |
+
help=f"Adjust the maximum number of tokens for the response. Maximum for the selected model: {max_tokens_range}"
|
118 |
+
)
|
119 |
+
else:
|
120 |
+
max_tokens = 200
|
121 |
+
|
122 |
+
# Additional options
|
123 |
+
stream_mode = st.checkbox("Enable Streaming", value=True)
|
124 |
+
|
125 |
+
# Button to clear the chat
|
126 |
+
if st.button("Clear Chat"):
|
127 |
+
st.session_state.messages = []
|
128 |
+
st.session_state.image_used = False
|
129 |
+
|
130 |
+
# Initialize session state for tracking uploaded image usage
|
131 |
+
if "image_used" not in st.session_state:
|
132 |
+
st.session_state.image_used = False # Flag to track image usage
|
133 |
+
|
134 |
+
# Check if the selected model supports vision
|
135 |
+
base64_image = None
|
136 |
+
uploaded_file = None
|
137 |
+
if model_option and "vision" in model_option.lower():
|
138 |
+
st.markdown(
|
139 |
+
"### Upload an Image"
|
140 |
+
"\n\n*One per conversation*"
|
141 |
+
)
|
142 |
+
|
143 |
+
# File uploader for images (only if image hasn't been used yet)
|
144 |
+
if not st.session_state.image_used:
|
145 |
+
uploaded_file = st.file_uploader(
|
146 |
+
"Upload an image for the model to process:",
|
147 |
+
type=["png", "jpg", "jpeg"],
|
148 |
+
help="Upload an image if the model supports vision tasks.",
|
149 |
+
accept_multiple_files=False
|
150 |
+
)
|
151 |
+
if uploaded_file:
|
152 |
+
base64_image = encode_image(uploaded_file)
|
153 |
+
st.image(uploaded_file, caption="Uploaded Image")
|
154 |
+
else:
|
155 |
+
base64_image = None
|
156 |
+
|
157 |
+
|
158 |
+
st.markdown("### Usage Summary")
|
159 |
+
usage_box = st.empty()
|
160 |
+
|
161 |
+
# Disclaimer
|
162 |
+
st.markdown(
|
163 |
+
"""
|
164 |
+
-----
|
165 |
+
⚠️ **Important:**
|
166 |
+
*The responses provided by this application are generated automatically using an AI model.
|
167 |
+
Users are responsible for verifying the accuracy of the information before relying on it.
|
168 |
+
Always cross-check facts and data for critical decisions.*
|
169 |
+
"""
|
170 |
+
)
|
171 |
+
|
172 |
+
# Main Chat Interface
|
173 |
+
st.markdown("### Chat Interface")
|
174 |
+
|
175 |
+
# Display the chat history
|
176 |
+
for message in st.session_state.messages:
|
177 |
+
avatar = "🔋" if message["role"] == "assistant" else "🧑💻"
|
178 |
+
with st.chat_message(message["role"], avatar=avatar):
|
179 |
+
# Check if the content is a list (text and image combined)
|
180 |
+
if isinstance(message["content"], list):
|
181 |
+
for item in message["content"]:
|
182 |
+
if item["type"] == "text":
|
183 |
+
st.markdown(item["text"])
|
184 |
+
elif item["type"] == "image_url":
|
185 |
+
# Handle base64-encoded image URLs
|
186 |
+
if item["image_url"]["url"].startswith("data:image"):
|
187 |
+
st.image(item["image_url"]["url"], caption="Uploaded Image")
|
188 |
+
st.session_state.image_used = True
|
189 |
+
else:
|
190 |
+
st.warning("Invalid image format or unsupported URL.")
|
191 |
+
else:
|
192 |
+
# For plain text content
|
193 |
+
st.markdown(message["content"])
|
194 |
+
|
195 |
+
|
196 |
+
# Capture user input
|
197 |
+
if user_input:=st.chat_input("Enter your message here..."):
|
198 |
+
# Append the user input to the session state
|
199 |
+
# including the image if uploaded
|
200 |
+
if base64_image and not st.session_state.image_used:
|
201 |
+
# Append the user message with the image to session state
|
202 |
+
st.session_state.messages.append(
|
203 |
+
{
|
204 |
+
"role": "user",
|
205 |
+
"content": [
|
206 |
+
{"type": "text", "text": user_input},
|
207 |
+
{
|
208 |
+
"type": "image_url",
|
209 |
+
"image_url": {
|
210 |
+
"url": f"data:image/jpeg;base64,{base64_image}",
|
211 |
+
},
|
212 |
+
},
|
213 |
+
],
|
214 |
+
}
|
215 |
+
)
|
216 |
+
st.session_state.image_used = True
|
217 |
+
else:
|
218 |
+
st.session_state.messages.append({"role": "user", "content": user_input})
|
219 |
+
|
220 |
+
# Display the uploaded image and user query in the chat
|
221 |
+
with st.chat_message("user", avatar="🧑💻"):
|
222 |
+
# Display the user input
|
223 |
+
st.markdown(user_input)
|
224 |
+
|
225 |
+
# Display the uploaded image only if it's included in the current message
|
226 |
+
if base64_image and st.session_state.image_used:
|
227 |
+
st.image(uploaded_file, caption="Uploaded Image")
|
228 |
+
base64_image = None
|
229 |
+
|
230 |
+
# Generate a response using the selected model
|
231 |
+
try:
|
232 |
+
full_response = ""
|
233 |
+
usage_summary = ""
|
234 |
+
|
235 |
+
if stream_mode:
|
236 |
+
# Generate a response with streaming enabled
|
237 |
+
chat_completion = client.chat.completions.create(
|
238 |
+
model=model_option,
|
239 |
+
messages=[
|
240 |
+
{"role": m["role"], "content": m["content"]}
|
241 |
+
for m in st.session_state.messages
|
242 |
+
],
|
243 |
+
max_tokens=max_tokens,
|
244 |
+
stream=True
|
245 |
+
)
|
246 |
+
|
247 |
+
with st.chat_message("assistant", avatar="🔋"):
|
248 |
+
response_placeholder = st.empty()
|
249 |
+
|
250 |
+
for chunk in chat_completion:
|
251 |
+
if chunk.choices[0].delta.content:
|
252 |
+
full_response += chunk.choices[0].delta.content
|
253 |
+
response_placeholder.markdown(full_response)
|
254 |
+
else:
|
255 |
+
# Generate a response without streaming
|
256 |
+
chat_completion = client.chat.completions.create(
|
257 |
+
model=model_option,
|
258 |
+
messages=[
|
259 |
+
{"role": m["role"], "content": m["content"]}
|
260 |
+
for m in st.session_state.messages
|
261 |
+
],
|
262 |
+
max_tokens=max_tokens,
|
263 |
+
stream=False
|
264 |
+
)
|
265 |
+
|
266 |
+
response = chat_completion.choices[0].message.content
|
267 |
+
usage_data = chat_completion.usage
|
268 |
+
|
269 |
+
with st.chat_message("assistant", avatar="🔋"):
|
270 |
+
st.markdown(response)
|
271 |
+
full_response = response
|
272 |
+
|
273 |
+
if usage_data:
|
274 |
+
usage_summary = (
|
275 |
+
f"**Token Usage:**\n"
|
276 |
+
f"- Prompt Tokens: {usage_data.prompt_tokens}\n"
|
277 |
+
f"- Response Tokens: {usage_data.completion_tokens}\n"
|
278 |
+
f"- Total Tokens: {usage_data.total_tokens}\n\n"
|
279 |
+
f"**Timings:**\n"
|
280 |
+
f"- Prompt Time: {round(usage_data.prompt_time,5)} secs\n"
|
281 |
+
f"- Response Time: {round(usage_data.completion_time,5)} secs\n"
|
282 |
+
f"- Total Time: {round(usage_data.total_time,5)} secs"
|
283 |
+
)
|
284 |
+
|
285 |
+
if usage_summary:
|
286 |
+
usage_box.markdown(usage_summary)
|
287 |
+
|
288 |
+
# Append the assistant's response to the session state
|
289 |
+
st.session_state.messages.append(
|
290 |
+
{"role": "assistant", "content": full_response}
|
291 |
+
)
|
292 |
|
293 |
+
except Exception as e:
|
294 |
+
st.error(f"Error generating the response: {e}")
|