Spaces:
Runtime error
Runtime error
Commit
·
8ee4c5d
1
Parent(s):
74dbaff
Update app.py
Browse files
app.py
CHANGED
@@ -1,375 +1,219 @@
|
|
1 |
# -*- coding: utf-8 -*-
|
2 |
-
"""
|
3 |
|
4 |
Automatically generated by Colaboratory.
|
5 |
|
6 |
Original file is located at
|
7 |
-
https://colab.research.google.com/drive/
|
8 |
-
|
9 |
-
CNN are mainly used to classify the images <br>
|
10 |
-
A basic CNN requires two additional layers called convoluation and pooling before the FNN <br>
|
11 |
-
CNN involves a Kernel<br>
|
12 |
-
Kernel is sliding/convuling matrix across the image with two operations<br>
|
13 |
-
1. element-wise multiplication
|
14 |
-
2. summation
|
15 |
-
<br>
|
16 |
-
Now comes the pooling part mainly there are two types of pooling<br>
|
17 |
-
1. Max pooling- getting the max element after the kernel iteration over the image
|
18 |
-
2. average pooling- getting the average of all the elements in the matrix
|
19 |
-
|
20 |
-
Now comes stride- it means number of steps in each convulation. By default it is 1. <br>
|
21 |
-
After using stride we can see that the input size becomes lesser so we add zeros symetrically in the matrix so the output becomes the same dimension of input <br>
|
22 |
-
|
23 |
-
The dimension of the output after applying all these <br>
|
24 |
-
O=(W-K+2P)/25 + 1<br>
|
25 |
-
W=input <br>
|
26 |
-
K=kernel size <br>
|
27 |
-
P=padding=(K-1)/2<br>
|
28 |
-
S=stride
|
29 |
-
|
30 |
-
# Importing libraries
|
31 |
-
"""
|
32 |
-
|
33 |
-
import torch
|
34 |
-
import torch.nn as nn
|
35 |
-
from torchvision import transforms,datasets
|
36 |
-
from torch.utils.data import dataset, DataLoader
|
37 |
-
import torchvision.datasets as dsets
|
38 |
-
|
39 |
-
"""# Loading the data """
|
40 |
-
|
41 |
-
#we will be using the mnist dataset for this purpose
|
42 |
-
train_dataset = dsets.MNIST(root='./data',
|
43 |
-
train=True,
|
44 |
-
transform=transforms.ToTensor(),
|
45 |
-
download=True)
|
46 |
-
|
47 |
-
test_dataset = dsets.MNIST(root='./data',
|
48 |
-
train=False,
|
49 |
-
transform=transforms.ToTensor())
|
50 |
-
|
51 |
-
#making our dataset iterable
|
52 |
-
batch_size = 100
|
53 |
-
n_iters = 3000
|
54 |
-
num_epochs = n_iters / (len(train_dataset) / batch_size)
|
55 |
-
num_epochs = int(num_epochs)
|
56 |
-
|
57 |
-
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
|
58 |
-
batch_size=batch_size,
|
59 |
-
shuffle=True)
|
60 |
-
|
61 |
-
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
|
62 |
-
batch_size=batch_size,
|
63 |
-
shuffle=False)
|
64 |
-
|
65 |
-
"""# Defining our model """
|
66 |
-
|
67 |
-
class CNN(nn.Module):
|
68 |
-
def __init__(self):
|
69 |
-
super(CNN,self).__init__()
|
70 |
-
|
71 |
-
#defining the layers
|
72 |
-
self.block1=nn.Sequential(nn.Conv2d(1,16,kernel_size=(5,5),stride=1,padding=2),
|
73 |
-
nn.ReLU(),
|
74 |
-
nn.MaxPool2d(kernel_size=2))
|
75 |
-
#output after this operation
|
76 |
-
#(28-5+2/1 +1 =28 then max pooling 28/2=14)
|
77 |
-
|
78 |
-
self.block2=nn.Sequential(nn.Conv2d(16,32,kernel_size=(5,5),stride=1,padding=2),
|
79 |
-
nn.ReLU(),
|
80 |
-
nn.MaxPool2d(kernel_size=2))
|
81 |
-
|
82 |
-
#output after this
|
83 |
-
#(14-5+2*2/1 +1 = 13+1=14 then 14/2= 7)
|
84 |
-
|
85 |
-
self.layer=nn.Linear(32*7*7,10)
|
86 |
-
|
87 |
|
88 |
-
|
89 |
-
|
90 |
-
x=self.block2(x)
|
91 |
-
#flatteing the output
|
92 |
-
x = x.view(x.size(0), -1)
|
93 |
-
#now feeding inot the linear network
|
94 |
-
x = self.layer(x)
|
95 |
-
|
96 |
-
return x
|
97 |
-
|
98 |
-
#making instance
|
99 |
-
model=CNN()
|
100 |
-
print(model)
|
101 |
-
|
102 |
-
"""# Training the model"""
|
103 |
-
|
104 |
-
#initialising the loss and optimizer
|
105 |
-
criterion=nn.CrossEntropyLoss()
|
106 |
-
learning_rate = 0.01
|
107 |
-
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
|
108 |
-
|
109 |
-
print(model.parameters())
|
110 |
|
111 |
-
|
|
|
|
|
|
|
112 |
|
113 |
-
|
114 |
-
|
|
|
|
|
115 |
|
116 |
-
|
117 |
-
|
118 |
|
119 |
-
|
120 |
-
|
|
|
|
|
|
|
121 |
|
122 |
-
# Convolution 2 Bias: 32 Kernels with depth = 16
|
123 |
-
print(list(model.parameters())[3].size())
|
124 |
|
125 |
-
|
126 |
-
print(list(model.parameters())[4].size())
|
127 |
|
128 |
-
|
129 |
-
|
|
|
130 |
|
131 |
-
|
132 |
-
|
133 |
|
134 |
-
|
135 |
-
|
136 |
|
137 |
-
|
138 |
-
images.requires_grad_()
|
139 |
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
#calclauting the output and loss
|
144 |
-
output=model(images)
|
145 |
|
146 |
-
|
147 |
|
148 |
-
|
149 |
-
|
|
|
150 |
|
151 |
-
#updating the parameters
|
152 |
-
optimizer.step()
|
153 |
|
154 |
-
|
|
|
|
|
|
|
155 |
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
correct = 0
|
160 |
-
total = 0
|
161 |
|
162 |
-
#now iterate through the test dataset
|
163 |
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
total += labels.size(0)
|
169 |
-
correct += (predicted == labels).sum()
|
170 |
-
|
171 |
-
accuracy = 100 * correct / total
|
172 |
|
173 |
-
# Print Loss
|
174 |
-
print('Iteration: {}. Loss: {}. Accuracy: {}'.format(iter, loss.item(), accuracy))
|
175 |
|
176 |
-
|
|
|
177 |
|
178 |
-
|
|
|
179 |
|
180 |
-
|
181 |
-
"""
|
182 |
|
183 |
-
|
184 |
-
|
185 |
-
super().__init__()
|
186 |
-
|
187 |
-
#defining the layers
|
188 |
-
self.block1=nn.Sequential(nn.Conv2d(1,16,kernel_size=(5,5),stride=1,padding=2),
|
189 |
-
nn.ReLU(),
|
190 |
-
nn.AvgPool2d(kernel_size=2))
|
191 |
-
#output after this operation
|
192 |
-
#(28-5+2/1 +1 =28 then max pooling 28/2=14)
|
193 |
-
|
194 |
-
self.block2=nn.Sequential(nn.Conv2d(16,32,kernel_size=(5,5),stride=1,padding=2),
|
195 |
-
nn.ReLU(),
|
196 |
-
nn.AvgPool2d(kernel_size=2))
|
197 |
-
|
198 |
-
#output after this
|
199 |
-
#(14-5+2*2/1 +1 = 13+1=14 then 14/2= 7)
|
200 |
-
|
201 |
-
self.layer=nn.Linear(32*7*7,10)
|
202 |
-
|
203 |
-
|
204 |
-
def forward(self,x):
|
205 |
-
x=self.block1(x)
|
206 |
-
x=self.block2(x)
|
207 |
-
#flatteing the output
|
208 |
-
x = x.view(x.size(0), -1)
|
209 |
-
#now feeding inot the linear network
|
210 |
-
x = self.layer(x)
|
211 |
-
|
212 |
-
return x
|
213 |
-
|
214 |
-
#making instance
|
215 |
-
model2=CNN2()
|
216 |
-
print(model2)
|
217 |
-
|
218 |
-
learning_rate = 0.01
|
219 |
-
optimizer = torch.optim.SGD(model2.parameters(), lr=learning_rate)
|
220 |
-
|
221 |
-
#lets begin the training
|
222 |
-
iter=0
|
223 |
-
|
224 |
-
for epochs in range(num_epochs):
|
225 |
-
for i,(images,labels) in enumerate(train_loader):
|
226 |
-
|
227 |
-
#loading the images
|
228 |
-
images.requires_grad_()
|
229 |
-
|
230 |
-
#first clearning the parameters
|
231 |
-
optimizer.zero_grad()
|
232 |
-
|
233 |
-
#calclauting the output and loss
|
234 |
-
output=model2(images)
|
235 |
-
|
236 |
-
loss=criterion(output,labels)
|
237 |
-
|
238 |
-
#backprapgating the loss
|
239 |
-
loss.backward()
|
240 |
-
|
241 |
-
#updating the parameters
|
242 |
-
optimizer.step()
|
243 |
-
|
244 |
-
iter+=1
|
245 |
-
|
246 |
-
#printing for every 500 iterations
|
247 |
-
if iter%500==0:
|
248 |
-
# Calculate Accuracy
|
249 |
-
correct = 0
|
250 |
-
total = 0
|
251 |
-
|
252 |
-
#now iterate through the test dataset
|
253 |
-
|
254 |
-
for images,labels in test_loader:
|
255 |
-
images = images.requires_grad_()
|
256 |
-
outputs = model2(images)
|
257 |
-
_, predicted = torch.max(outputs.data, 1)
|
258 |
-
total += labels.size(0)
|
259 |
-
correct += (predicted == labels).sum()
|
260 |
-
|
261 |
-
accuracy = 100 * correct / total
|
262 |
-
|
263 |
-
# Print Loss
|
264 |
-
print('Iteration: {}. Loss: {}. Accuracy: {}'.format(iter, loss.item(), accuracy))
|
265 |
-
|
266 |
-
"""Accuracy came out to be 93 %
|
267 |
-
|
268 |
-
# Model 3
|
269 |
-
This involves vaild pooling which means smaller output size
|
270 |
-
"""
|
271 |
|
272 |
-
class
|
273 |
def __init__(self):
|
274 |
-
super(
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
|
|
|
|
|
|
292 |
|
293 |
def forward(self, x):
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
""
|
375 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
# -*- coding: utf-8 -*-
|
2 |
+
"""B20AI006_MNIST_Trial.ipynb
|
3 |
|
4 |
Automatically generated by Colaboratory.
|
5 |
|
6 |
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1xG500b51pcVvYpP_fgsQ2IgEPQ3TLIup
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
+
###Importing Libraries
|
10 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
+
# Commented out IPython magic to ensure Python compatibility.
|
13 |
+
import os
|
14 |
+
import sys
|
15 |
+
import numpy as np
|
16 |
|
17 |
+
import torch
|
18 |
+
import torch.nn as nn
|
19 |
+
import torch.nn.functional as F
|
20 |
+
import torch.optim as optim
|
21 |
|
22 |
+
import torch.profiler
|
23 |
+
from torch.utils.data import DataLoader, TensorDataset
|
24 |
|
25 |
+
import torchvision.utils
|
26 |
+
from torchvision import models
|
27 |
+
import torchvision.datasets as dsets
|
28 |
+
import torchvision.transforms as transforms
|
29 |
+
from torchvision.models import resnet18, ResNet18_Weights
|
30 |
|
|
|
|
|
31 |
|
32 |
+
from sklearn.manifold import TSNE
|
|
|
33 |
|
34 |
+
from sklearn.metrics import accuracy_score
|
35 |
+
import matplotlib.pyplot as plt
|
36 |
+
# %matplotlib inline
|
37 |
|
38 |
+
import warnings
|
39 |
+
warnings.filterwarnings('ignore')
|
40 |
|
41 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
42 |
+
device
|
43 |
|
44 |
+
"""##Q1
|
|
|
45 |
|
46 |
+
###Loading CIFAR10
|
47 |
+
"""
|
|
|
|
|
|
|
48 |
|
49 |
+
# Define the transformations to apply to the images
|
50 |
|
51 |
+
transform_train = transforms.Compose([
|
52 |
+
transforms.ToTensor()
|
53 |
+
])
|
54 |
|
|
|
|
|
55 |
|
56 |
+
transform = transforms.Compose(
|
57 |
+
[
|
58 |
+
transforms.ToTensor(),
|
59 |
+
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
|
60 |
|
61 |
+
transform_test = transforms.Compose([
|
62 |
+
transforms.ToTensor()
|
63 |
+
])
|
|
|
|
|
64 |
|
|
|
65 |
|
66 |
+
mnist_train = dsets.MNIST(root='./', train=True,
|
67 |
+
download=True, transform=transform_train)
|
68 |
+
mnist_test = dsets.MNIST(root='./', train=False,
|
69 |
+
download=True, transform=transform_test)
|
|
|
|
|
|
|
|
|
70 |
|
|
|
|
|
71 |
|
72 |
+
train_loader = torch.utils.data.DataLoader(mnist_train, batch_size=64,
|
73 |
+
shuffle=True, num_workers=1)
|
74 |
|
75 |
+
test_loader = torch.utils.data.DataLoader(mnist_test, batch_size=64,
|
76 |
+
shuffle=False, num_workers=1)
|
77 |
|
78 |
+
"""###Defining CNN model as mentioned in question"""
|
|
|
79 |
|
80 |
+
import torch
|
81 |
+
import torch.nn as nn
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
+
class MNISTModel(nn.Module):
|
84 |
def __init__(self):
|
85 |
+
super(MNISTModel, self).__init__()
|
86 |
+
self.conv_layers = nn.Sequential(
|
87 |
+
nn.Conv2d(in_channels=1, out_channels=8, kernel_size=3, stride=1, padding=1),
|
88 |
+
nn.ReLU(inplace=True),
|
89 |
+
nn.Conv2d(in_channels=8, out_channels=16, kernel_size=3, stride=1,padding=1),
|
90 |
+
nn.ReLU(inplace=True),
|
91 |
+
nn.MaxPool2d(kernel_size=2),
|
92 |
+
# nn.Conv2d(in_channels=16, out_channels=32, kernel_size=3, stride=1,padding=1),
|
93 |
+
# nn.ReLU(inplace=True),
|
94 |
+
# nn.Conv2d(in_channels=32, out_channels=64, kernel_size=3, stride=1,padding=1),
|
95 |
+
# nn.ReLU(inplace=True),
|
96 |
+
# nn.MaxPool2d(kernel_size=2),
|
97 |
+
# nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3, stride=1,padding=1),
|
98 |
+
# nn.ReLU(inplace=True),
|
99 |
+
# nn.Conv2d(in_channels=128, out_channels=256, kernel_size=3, stride=1,padding=1),
|
100 |
+
# nn.ReLU(inplace=True),
|
101 |
+
# nn.MaxPool2d(kernel_size=2)
|
102 |
+
)
|
103 |
+
self.fc_layers = nn.Sequential(
|
104 |
+
nn.Linear(in_features=3136, out_features=10)
|
105 |
+
)
|
106 |
|
107 |
def forward(self, x):
|
108 |
+
x = self.conv_layers(x)
|
109 |
+
x = torch.flatten(x, 1)
|
110 |
+
# print(x.shape)
|
111 |
+
x = self.fc_layers(x)
|
112 |
+
return x
|
113 |
+
|
114 |
+
model = MNISTModel()
|
115 |
+
criterion = nn.CrossEntropyLoss()
|
116 |
+
optimizer = optim.Adam(model.parameters(), lr=0.001)
|
117 |
+
|
118 |
+
"""###Training the model"""
|
119 |
+
|
120 |
+
def train_main(train_loader, test_loader, num_epochs, optimizer, model, device='cpu'):
|
121 |
+
# Lists to store the train and test losses and accuracies
|
122 |
+
train_losses = []
|
123 |
+
test_losses = []
|
124 |
+
train_accs = []
|
125 |
+
test_accs = []
|
126 |
+
|
127 |
+
criterion = nn.CrossEntropyLoss()
|
128 |
+
|
129 |
+
model.to(device)
|
130 |
+
|
131 |
+
for epoch in range(num_epochs):
|
132 |
+
train_loss = 0
|
133 |
+
train_correct = 0
|
134 |
+
train_total = 0
|
135 |
+
|
136 |
+
for i, (images, labels) in enumerate(train_loader):
|
137 |
+
# Send inputs and targets to GPU if available
|
138 |
+
images = images.to(device)
|
139 |
+
labels = labels.to(device)
|
140 |
+
|
141 |
+
optimizer.zero_grad() # zero the gradients
|
142 |
+
outputs = model(images)
|
143 |
+
loss = criterion(outputs, labels) # calculate the loss
|
144 |
+
loss.backward() # backpropagation
|
145 |
+
optimizer.step() # update weights
|
146 |
+
train_loss += loss.item()
|
147 |
+
|
148 |
+
# calculate the training accuracy
|
149 |
+
_, predicted = torch.max(outputs.data, 1)
|
150 |
+
train_total += labels.size(0)
|
151 |
+
train_correct += (predicted == labels).sum().item()
|
152 |
+
|
153 |
+
# prof.step() ##Taking step in tensorboard profiler
|
154 |
+
|
155 |
+
# evaluate the model on the test set
|
156 |
+
test_loss = 0
|
157 |
+
test_correct = 0
|
158 |
+
test_total = 0
|
159 |
+
with torch.no_grad():
|
160 |
+
for images, labels in test_loader:
|
161 |
+
# Send inputs and targets to GPU if available
|
162 |
+
images = images.to(device)
|
163 |
+
labels = labels.to(device)
|
164 |
+
|
165 |
+
outputs = model(images)
|
166 |
+
loss = criterion(outputs, labels)
|
167 |
+
test_loss += loss.item()
|
168 |
+
|
169 |
+
# calculate the testing accuracy
|
170 |
+
_, predicted = torch.max(outputs.data, 1)
|
171 |
+
test_total += labels.size(0)
|
172 |
+
test_correct += (predicted == labels).sum().item()
|
173 |
+
|
174 |
+
# append the average loss and accuracy for the epoch to the lists
|
175 |
+
train_loss /= len(train_loader)
|
176 |
+
test_loss /= len(test_loader)
|
177 |
+
train_acc = 100.0 * train_correct / train_total
|
178 |
+
test_acc = 100.0 * test_correct / test_total
|
179 |
+
train_losses.append(train_loss)
|
180 |
+
test_losses.append(test_loss)
|
181 |
+
train_accs.append(train_acc)
|
182 |
+
test_accs.append(test_acc)
|
183 |
+
print('Epoch: {}, train loss: {:.4f}, test loss: {:.4f}, train accuracy: {:.2f}%, test accuracy: {:.2f}%'.format(epoch+1, train_loss, test_loss, train_acc, test_acc))
|
184 |
+
|
185 |
+
# save the results to a text file
|
186 |
+
with open("results.txt", "w") as f:
|
187 |
+
for epoch in range(num_epochs):
|
188 |
+
f.write("Epoch: {}, train loss: {:.4f}, test loss: {:.4f}, train accuracy: {:.2f}%, test accuracy: {:.2f}%\n".format(epoch+1, train_losses[epoch], test_losses[epoch], train_accs[epoch], test_accs[epoch]))
|
189 |
+
|
190 |
+
# plot the loss and accuracy curves side by side
|
191 |
+
fig, axs = plt.subplots(1, 2, figsize=(12, 4))
|
192 |
+
axs[0].plot(train_losses, label='Train Loss')
|
193 |
+
axs[0].plot(test_losses, label='Test Loss')
|
194 |
+
axs[0].set_xlabel('Epoch')
|
195 |
+
axs[0].set_ylabel('Loss')
|
196 |
+
axs[0].legend()
|
197 |
+
axs[1].plot(train_accs, label='Train Accuracy')
|
198 |
+
axs[1].plot(test_accs, label='Test Accuracy')
|
199 |
+
axs[1].set_xlabel('Epoch')
|
200 |
+
axs[1].set_ylabel('Accuracy')
|
201 |
+
axs[1].legend()
|
202 |
+
plt.savefig('loss_and_accuracy.png')
|
203 |
+
torch.save(model, 'trained_model.pt')
|
204 |
+
plt.show()
|
205 |
+
|
206 |
+
num_epochs=3
|
207 |
+
train_main(train_loader, test_loader, num_epochs, optimizer, model, device)
|
208 |
+
|
209 |
+
|
210 |
+
|
211 |
+
"""###ResNet18 model"""
|
212 |
+
|
213 |
+
# model = models.resnet18(pretrained=False)
|
214 |
+
# num_ftrs = model.fc.in_features
|
215 |
+
# model.fc = nn.Linear(num_ftrs, 10)
|
216 |
+
|
217 |
+
# # model.to(device)
|
218 |
+
# criterion = nn.CrossEntropyLoss()
|
219 |
+
# optimizer = optim.Adam(model.parameters(), lr=0.001)
|