Spaces:
Runtime error
Runtime error
Commit
·
d8369fc
1
Parent(s):
6fdab71
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,375 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""CNN(mnist).ipynb
|
3 |
+
|
4 |
+
Automatically generated by Colaboratory.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1_4EIIBRbLBfS5tDz6VSgPIIpSv1t03Y7
|
8 |
+
|
9 |
+
CNN are mainly used to classify the images <br>
|
10 |
+
A basic CNN requires two additional layers called convoluation and pooling before the FNN <br>
|
11 |
+
CNN involves a Kernel<br>
|
12 |
+
Kernel is sliding/convuling matrix across the image with two operations<br>
|
13 |
+
1. element-wise multiplication
|
14 |
+
2. summation
|
15 |
+
<br>
|
16 |
+
Now comes the pooling part mainly there are two types of pooling<br>
|
17 |
+
1. Max pooling- getting the max element after the kernel iteration over the image
|
18 |
+
2. average pooling- getting the average of all the elements in the matrix
|
19 |
+
|
20 |
+
Now comes stride- it means number of steps in each convulation. By default it is 1. <br>
|
21 |
+
After using stride we can see that the input size becomes lesser so we add zeros symetrically in the matrix so the output becomes the same dimension of input <br>
|
22 |
+
|
23 |
+
The dimension of the output after applying all these <br>
|
24 |
+
O=(W-K+2P)/25 + 1<br>
|
25 |
+
W=input <br>
|
26 |
+
K=kernel size <br>
|
27 |
+
P=padding=(K-1)/2<br>
|
28 |
+
S=stride
|
29 |
+
|
30 |
+
# Importing libraries
|
31 |
+
"""
|
32 |
+
|
33 |
+
import torch
|
34 |
+
import torch.nn as nn
|
35 |
+
from torchvision import transforms,datasets
|
36 |
+
from torch.utils.data import dataset, DataLoader
|
37 |
+
import torchvision.datasets as dsets
|
38 |
+
|
39 |
+
"""# Loading the data """
|
40 |
+
|
41 |
+
#we will be using the mnist dataset for this purpose
|
42 |
+
train_dataset = dsets.MNIST(root='./data',
|
43 |
+
train=True,
|
44 |
+
transform=transforms.ToTensor(),
|
45 |
+
download=True)
|
46 |
+
|
47 |
+
test_dataset = dsets.MNIST(root='./data',
|
48 |
+
train=False,
|
49 |
+
transform=transforms.ToTensor())
|
50 |
+
|
51 |
+
#making our dataset iterable
|
52 |
+
batch_size = 100
|
53 |
+
n_iters = 3000
|
54 |
+
num_epochs = n_iters / (len(train_dataset) / batch_size)
|
55 |
+
num_epochs = int(num_epochs)
|
56 |
+
|
57 |
+
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
|
58 |
+
batch_size=batch_size,
|
59 |
+
shuffle=True)
|
60 |
+
|
61 |
+
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
|
62 |
+
batch_size=batch_size,
|
63 |
+
shuffle=False)
|
64 |
+
|
65 |
+
"""# Defining our model """
|
66 |
+
|
67 |
+
class CNN(nn.Module):
|
68 |
+
def __init__(self):
|
69 |
+
super(CNN,self).__init__()
|
70 |
+
|
71 |
+
#defining the layers
|
72 |
+
self.block1=nn.Sequential(nn.Conv2d(1,16,kernel_size=(5,5),stride=1,padding=2),
|
73 |
+
nn.ReLU(),
|
74 |
+
nn.MaxPool2d(kernel_size=2))
|
75 |
+
#output after this operation
|
76 |
+
#(28-5+2/1 +1 =28 then max pooling 28/2=14)
|
77 |
+
|
78 |
+
self.block2=nn.Sequential(nn.Conv2d(16,32,kernel_size=(5,5),stride=1,padding=2),
|
79 |
+
nn.ReLU(),
|
80 |
+
nn.MaxPool2d(kernel_size=2))
|
81 |
+
|
82 |
+
#output after this
|
83 |
+
#(14-5+2*2/1 +1 = 13+1=14 then 14/2= 7)
|
84 |
+
|
85 |
+
self.layer=nn.Linear(32*7*7,10)
|
86 |
+
|
87 |
+
|
88 |
+
def forward(self,x):
|
89 |
+
x=self.block1(x)
|
90 |
+
x=self.block2(x)
|
91 |
+
#flatteing the output
|
92 |
+
x = x.view(x.size(0), -1)
|
93 |
+
#now feeding inot the linear network
|
94 |
+
x = self.layer(x)
|
95 |
+
|
96 |
+
return x
|
97 |
+
|
98 |
+
#making instance
|
99 |
+
model=CNN()
|
100 |
+
print(model)
|
101 |
+
|
102 |
+
"""# Training the model"""
|
103 |
+
|
104 |
+
#initialising the loss and optimizer
|
105 |
+
criterion=nn.CrossEntropyLoss()
|
106 |
+
learning_rate = 0.01
|
107 |
+
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
|
108 |
+
|
109 |
+
print(model.parameters())
|
110 |
+
|
111 |
+
print(len(list(model.parameters())))
|
112 |
+
|
113 |
+
# Convolution 1: 16 Kernels
|
114 |
+
print(list(model.parameters())[0].size())
|
115 |
+
|
116 |
+
# Convolution 1 Bias: 16 Kernels
|
117 |
+
print(list(model.parameters())[1].size())
|
118 |
+
|
119 |
+
# Convolution 2: 32 Kernels with depth = 16
|
120 |
+
print(list(model.parameters())[2].size())
|
121 |
+
|
122 |
+
# Convolution 2 Bias: 32 Kernels with depth = 16
|
123 |
+
print(list(model.parameters())[3].size())
|
124 |
+
|
125 |
+
# Fully Connected Layer 1
|
126 |
+
print(list(model.parameters())[4].size())
|
127 |
+
|
128 |
+
# Fully Connected Layer Bias
|
129 |
+
print(list(model.parameters())[5].size())
|
130 |
+
|
131 |
+
#lets begin the training
|
132 |
+
iter=0
|
133 |
+
|
134 |
+
for epochs in range(num_epochs):
|
135 |
+
for i,(images,labels) in enumerate(train_loader):
|
136 |
+
|
137 |
+
#loading the images
|
138 |
+
images.requires_grad_()
|
139 |
+
|
140 |
+
#first clearning the parameters
|
141 |
+
optimizer.zero_grad()
|
142 |
+
|
143 |
+
#calclauting the output and loss
|
144 |
+
output=model(images)
|
145 |
+
|
146 |
+
loss=criterion(output,labels)
|
147 |
+
|
148 |
+
#backprapgating the loss
|
149 |
+
loss.backward()
|
150 |
+
|
151 |
+
#updating the parameters
|
152 |
+
optimizer.step()
|
153 |
+
|
154 |
+
iter+=1
|
155 |
+
|
156 |
+
#printing for every 500 iterations
|
157 |
+
if iter%500==0:
|
158 |
+
# Calculate Accuracy
|
159 |
+
correct = 0
|
160 |
+
total = 0
|
161 |
+
|
162 |
+
#now iterate through the test dataset
|
163 |
+
|
164 |
+
for images,labels in test_loader:
|
165 |
+
images = images.requires_grad_()
|
166 |
+
outputs = model(images)
|
167 |
+
_, predicted = torch.max(outputs.data, 1)
|
168 |
+
total += labels.size(0)
|
169 |
+
correct += (predicted == labels).sum()
|
170 |
+
|
171 |
+
accuracy = 100 * correct / total
|
172 |
+
|
173 |
+
# Print Loss
|
174 |
+
print('Iteration: {}. Loss: {}. Accuracy: {}'.format(iter, loss.item(), accuracy))
|
175 |
+
|
176 |
+
"""Accuracy came out to 96.63
|
177 |
+
|
178 |
+
# Model 2
|
179 |
+
|
180 |
+
This involves average pooling layer
|
181 |
+
"""
|
182 |
+
|
183 |
+
class CNN2(nn.Module):
|
184 |
+
def __init__(self):
|
185 |
+
super().__init__()
|
186 |
+
|
187 |
+
#defining the layers
|
188 |
+
self.block1=nn.Sequential(nn.Conv2d(1,16,kernel_size=(5,5),stride=1,padding=2),
|
189 |
+
nn.ReLU(),
|
190 |
+
nn.AvgPool2d(kernel_size=2))
|
191 |
+
#output after this operation
|
192 |
+
#(28-5+2/1 +1 =28 then max pooling 28/2=14)
|
193 |
+
|
194 |
+
self.block2=nn.Sequential(nn.Conv2d(16,32,kernel_size=(5,5),stride=1,padding=2),
|
195 |
+
nn.ReLU(),
|
196 |
+
nn.AvgPool2d(kernel_size=2))
|
197 |
+
|
198 |
+
#output after this
|
199 |
+
#(14-5+2*2/1 +1 = 13+1=14 then 14/2= 7)
|
200 |
+
|
201 |
+
self.layer=nn.Linear(32*7*7,10)
|
202 |
+
|
203 |
+
|
204 |
+
def forward(self,x):
|
205 |
+
x=self.block1(x)
|
206 |
+
x=self.block2(x)
|
207 |
+
#flatteing the output
|
208 |
+
x = x.view(x.size(0), -1)
|
209 |
+
#now feeding inot the linear network
|
210 |
+
x = self.layer(x)
|
211 |
+
|
212 |
+
return x
|
213 |
+
|
214 |
+
#making instance
|
215 |
+
model2=CNN2()
|
216 |
+
print(model2)
|
217 |
+
|
218 |
+
learning_rate = 0.01
|
219 |
+
optimizer = torch.optim.SGD(model2.parameters(), lr=learning_rate)
|
220 |
+
|
221 |
+
#lets begin the training
|
222 |
+
iter=0
|
223 |
+
|
224 |
+
for epochs in range(num_epochs):
|
225 |
+
for i,(images,labels) in enumerate(train_loader):
|
226 |
+
|
227 |
+
#loading the images
|
228 |
+
images.requires_grad_()
|
229 |
+
|
230 |
+
#first clearning the parameters
|
231 |
+
optimizer.zero_grad()
|
232 |
+
|
233 |
+
#calclauting the output and loss
|
234 |
+
output=model2(images)
|
235 |
+
|
236 |
+
loss=criterion(output,labels)
|
237 |
+
|
238 |
+
#backprapgating the loss
|
239 |
+
loss.backward()
|
240 |
+
|
241 |
+
#updating the parameters
|
242 |
+
optimizer.step()
|
243 |
+
|
244 |
+
iter+=1
|
245 |
+
|
246 |
+
#printing for every 500 iterations
|
247 |
+
if iter%500==0:
|
248 |
+
# Calculate Accuracy
|
249 |
+
correct = 0
|
250 |
+
total = 0
|
251 |
+
|
252 |
+
#now iterate through the test dataset
|
253 |
+
|
254 |
+
for images,labels in test_loader:
|
255 |
+
images = images.requires_grad_()
|
256 |
+
outputs = model2(images)
|
257 |
+
_, predicted = torch.max(outputs.data, 1)
|
258 |
+
total += labels.size(0)
|
259 |
+
correct += (predicted == labels).sum()
|
260 |
+
|
261 |
+
accuracy = 100 * correct / total
|
262 |
+
|
263 |
+
# Print Loss
|
264 |
+
print('Iteration: {}. Loss: {}. Accuracy: {}'.format(iter, loss.item(), accuracy))
|
265 |
+
|
266 |
+
"""Accuracy came out to be 93 %
|
267 |
+
|
268 |
+
# Model 3
|
269 |
+
This involves vaild pooling which means smaller output size
|
270 |
+
"""
|
271 |
+
|
272 |
+
class CNN3(nn.Module):
|
273 |
+
def __init__(self):
|
274 |
+
super(CNN3, self).__init__()
|
275 |
+
|
276 |
+
# Convolution 1
|
277 |
+
self.cnn1 = nn.Conv2d(in_channels=1, out_channels=16, kernel_size=5, stride=1, padding=0)
|
278 |
+
self.relu1 = nn.ReLU()
|
279 |
+
|
280 |
+
# Max pool 1
|
281 |
+
self.maxpool1 = nn.MaxPool2d(kernel_size=2)
|
282 |
+
|
283 |
+
# Convolution 2
|
284 |
+
self.cnn2 = nn.Conv2d(in_channels=16, out_channels=32, kernel_size=5, stride=1, padding=0)
|
285 |
+
self.relu2 = nn.ReLU()
|
286 |
+
|
287 |
+
# Max pool 2
|
288 |
+
self.maxpool2 = nn.MaxPool2d(kernel_size=2)
|
289 |
+
|
290 |
+
# Fully connected 1 (readout)
|
291 |
+
self.fc1 = nn.Linear(32 * 4 * 4, 10)
|
292 |
+
|
293 |
+
def forward(self, x):
|
294 |
+
# Convolution 1
|
295 |
+
out = self.cnn1(x)
|
296 |
+
out = self.relu1(out)
|
297 |
+
|
298 |
+
# Max pool 1
|
299 |
+
out = self.maxpool1(out)
|
300 |
+
|
301 |
+
# Convolution 2
|
302 |
+
out = self.cnn2(out)
|
303 |
+
out = self.relu2(out)
|
304 |
+
|
305 |
+
# Max pool 2
|
306 |
+
out = self.maxpool2(out)
|
307 |
+
|
308 |
+
# Resize
|
309 |
+
# Original size: (100, 32, 7, 7)
|
310 |
+
# out.size(0): 100
|
311 |
+
# New out size: (100, 32*7*7)
|
312 |
+
out = out.view(out.size(0), -1)
|
313 |
+
|
314 |
+
# Linear function (readout)
|
315 |
+
out = self.fc1(out)
|
316 |
+
|
317 |
+
return out
|
318 |
+
|
319 |
+
#making instance
|
320 |
+
model3=CNN3()
|
321 |
+
print(model3)
|
322 |
+
|
323 |
+
learning_rate = 0.01
|
324 |
+
optimizer = torch.optim.SGD(model3.parameters(), lr=learning_rate)
|
325 |
+
|
326 |
+
#lets begin the training
|
327 |
+
iter=0
|
328 |
+
|
329 |
+
for epochs in range(num_epochs):
|
330 |
+
for i,(images,labels) in enumerate(train_loader):
|
331 |
+
|
332 |
+
#loading the images
|
333 |
+
images.requires_grad_()
|
334 |
+
|
335 |
+
#first clearning the parameters
|
336 |
+
optimizer.zero_grad()
|
337 |
+
|
338 |
+
#calclauting the output and loss
|
339 |
+
output=model3(images)
|
340 |
+
|
341 |
+
loss=criterion(output,labels)
|
342 |
+
|
343 |
+
#backprapgating the loss
|
344 |
+
loss.backward()
|
345 |
+
|
346 |
+
#updating the parameters
|
347 |
+
optimizer.step()
|
348 |
+
|
349 |
+
iter+=1
|
350 |
+
|
351 |
+
#printing for every 500 iterations
|
352 |
+
if iter%500==0:
|
353 |
+
# Calculate Accuracy
|
354 |
+
correct = 0
|
355 |
+
total = 0
|
356 |
+
|
357 |
+
#now iterate through the test dataset
|
358 |
+
|
359 |
+
for images,labels in test_loader:
|
360 |
+
images = images.requires_grad_()
|
361 |
+
outputs = model3(images)
|
362 |
+
_, predicted = torch.max(outputs.data, 1)
|
363 |
+
total += labels.size(0)
|
364 |
+
correct += (predicted == labels).sum()
|
365 |
+
|
366 |
+
accuracy = 100 * correct / total
|
367 |
+
|
368 |
+
# Print Loss
|
369 |
+
print('Iteration: {}. Loss: {}. Accuracy: {}'.format(iter, loss.item(), accuracy))
|
370 |
+
|
371 |
+
"""Accuracy is 96 for the model 3
|
372 |
+
|
373 |
+
We can see in the above models the model with max pooling and padding=1 gave the best accuracy
|
374 |
+
"""
|
375 |
+
|