Spaces:
Running
Running
Commit
·
e805cf3
1
Parent(s):
f875ce0
changing submission button for intutive usage
Browse files
app.py
CHANGED
@@ -15,18 +15,25 @@ class VSGradio:
|
|
15 |
self.model_config = model_config
|
16 |
self.model_ckpt_path = model_ckpt_path
|
17 |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
18 |
self.model = None
|
19 |
self.load_model()
|
20 |
|
21 |
def load_model(self):
|
22 |
-
|
23 |
-
|
24 |
-
self.model_ckpt_path
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
def normalize_fov(self, input: ArrayLike):
|
32 |
"Normalizing the fov with zero mean and unit variance"
|
@@ -47,45 +54,55 @@ class VSGradio:
|
|
47 |
return resize(inp, (new_height, new_width), anti_aliasing=True)
|
48 |
|
49 |
def predict(self, inp, scaling_factor: float):
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
|
88 |
-
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
|
91 |
def apply_colormap(prediction, colormap: cmap.Colormap):
|
@@ -146,250 +163,280 @@ def load_css(file_path):
|
|
146 |
|
147 |
|
148 |
if __name__ == "__main__":
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
# Model configuration
|
155 |
-
model_config = {
|
156 |
-
"in_channels": 1,
|
157 |
-
"out_channels": 2,
|
158 |
-
"encoder_blocks": [3, 3, 9, 3],
|
159 |
-
"dims": [96, 192, 384, 768],
|
160 |
-
"decoder_conv_blocks": 2,
|
161 |
-
"stem_kernel_size": [1, 2, 2],
|
162 |
-
"in_stack_depth": 1,
|
163 |
-
"pretraining": False,
|
164 |
-
}
|
165 |
-
|
166 |
-
vsgradio = VSGradio(model_config, model_ckpt_path)
|
167 |
-
|
168 |
-
# Initialize the Gradio app using Blocks
|
169 |
-
with gr.Blocks(css=load_css("style.css")) as demo:
|
170 |
-
# Title and description
|
171 |
-
gr.HTML(
|
172 |
-
"""
|
173 |
-
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
|
174 |
-
<a href="https://www.czbiohub.org/sf/" target="_blank">
|
175 |
-
<img src="https://huggingface.co/spaces/compmicro-czb/VirtualStaining/resolve/main/misc/czb_mark.png" style="width: 100px; height: auto; margin-right: 10px;">
|
176 |
-
</a>
|
177 |
-
<div class='title-block'> Robust virtual staining of landmark organelles with Cytoland </div>
|
178 |
-
</div>
|
179 |
-
"""
|
180 |
)
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
204 |
)
|
205 |
|
206 |
-
|
207 |
-
|
208 |
-
|
|
|
209 |
)
|
210 |
-
|
211 |
-
type="numpy",
|
|
|
|
|
|
|
212 |
)
|
213 |
-
merged_image = gr.Image(
|
214 |
-
type="numpy", image_mode="RGB", label="Merged Image", visible=False
|
215 |
-
)
|
216 |
-
|
217 |
-
# Checkbox for applying invert
|
218 |
-
preprocess_invert = gr.Checkbox(label="Invert Image", value=False)
|
219 |
-
|
220 |
-
# Slider for gamma adjustment
|
221 |
-
gamma_factor = gr.Slider(
|
222 |
-
label="Adjust Gamma", minimum=0.01, maximum=5.0, value=1.0, step=0.1
|
223 |
-
)
|
224 |
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
231 |
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
|
|
|
|
236 |
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
)
|
242 |
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
cell_name = gr.Textbox(
|
249 |
-
label="Cell Name", placeholder="Cell Type", visible=False
|
250 |
-
)
|
251 |
-
imaging_modality = gr.Textbox(
|
252 |
-
label="Imaging Modality", placeholder="Imaging Modality", visible=False
|
253 |
-
)
|
254 |
-
references = gr.Textbox(
|
255 |
-
label="References", placeholder="References", visible=False
|
256 |
-
)
|
257 |
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
263 |
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
nucleus, membrane = vsgradio.predict(inp, scaling_factor)
|
270 |
-
if merge:
|
271 |
-
merged = merge_images(nucleus, membrane)
|
272 |
-
return (
|
273 |
-
merged,
|
274 |
-
gr.update(visible=True),
|
275 |
-
nucleus,
|
276 |
-
gr.update(visible=False),
|
277 |
-
membrane,
|
278 |
-
gr.update(visible=False),
|
279 |
-
)
|
280 |
-
else:
|
281 |
-
return (
|
282 |
-
None,
|
283 |
-
gr.update(visible=False),
|
284 |
-
nucleus,
|
285 |
-
gr.update(visible=True),
|
286 |
-
membrane,
|
287 |
-
gr.update(visible=True),
|
288 |
-
)
|
289 |
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
merged_image,
|
295 |
-
merged_image,
|
296 |
-
output_nucleus,
|
297 |
-
output_nucleus,
|
298 |
-
output_membrane,
|
299 |
-
output_membrane,
|
300 |
-
],
|
301 |
-
)
|
302 |
-
# Clear everything when the input image changes
|
303 |
-
input_image.change(
|
304 |
-
fn=clear_outputs,
|
305 |
-
inputs=input_image,
|
306 |
-
outputs=[adjusted_image, output_nucleus, output_membrane],
|
307 |
-
)
|
308 |
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
326 |
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
333 |
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
"3",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
350 |
],
|
351 |
-
[
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
"1.2",
|
360 |
-
"1",
|
361 |
],
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
cell_name,
|
375 |
-
imaging_modality,
|
376 |
-
gamma_factor,
|
377 |
-
preprocess_invert,
|
378 |
-
scaling_factor,
|
379 |
-
references,
|
380 |
-
],
|
381 |
-
)
|
382 |
-
# Article or footer information
|
383 |
-
gr.HTML(
|
384 |
-
"""
|
385 |
-
<div class='article-block'>
|
386 |
-
<li>1. <a href='https://www.biorxiv.org/content/10.1101/2024.05.31.596901' target='_blank'>Liu et al., Robust virtual staining of landmark organelles</a></li>
|
387 |
-
<li>2. <a href='https://sartorius-research.github.io/LIVECell/' target='_blank'>Edlund et. al. LIVECEll-A large-scale dataset for label-free live cell segmentation</a></li>
|
388 |
-
<li>3. <a href='https://celltrackingchallenge.net/' target='_blank'>Maska et. al.,The cell tracking challenge: 10 years of objective benchmarking </a></li>
|
389 |
-
<li>4. <a href='https://elifesciences.org/articles/55502' target='_blank'>Guo et. al., Revealing architectural order with quantitative label-free imaging and deep learning</a></li>
|
390 |
-
</div>
|
391 |
-
"""
|
392 |
-
)
|
393 |
|
394 |
-
|
395 |
-
|
|
|
|
|
|
15 |
self.model_config = model_config
|
16 |
self.model_ckpt_path = model_ckpt_path
|
17 |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
18 |
+
print(f"Using device: {self.device}")
|
19 |
self.model = None
|
20 |
self.load_model()
|
21 |
|
22 |
def load_model(self):
|
23 |
+
try:
|
24 |
+
# Load the model checkpoint and move it to the correct device (GPU or CPU)
|
25 |
+
print(f"Loading model from checkpoint: {self.model_ckpt_path}")
|
26 |
+
self.model = VSUNet.load_from_checkpoint(
|
27 |
+
self.model_ckpt_path,
|
28 |
+
architecture="UNeXt2_2D",
|
29 |
+
model_config=self.model_config,
|
30 |
+
)
|
31 |
+
self.model.to(self.device) # Move the model to the correct device (GPU/CPU)
|
32 |
+
self.model.eval()
|
33 |
+
print("Model loaded successfully and set to evaluation mode")
|
34 |
+
except Exception as e:
|
35 |
+
print(f"Error loading model: {e}")
|
36 |
+
raise
|
37 |
|
38 |
def normalize_fov(self, input: ArrayLike):
|
39 |
"Normalizing the fov with zero mean and unit variance"
|
|
|
54 |
return resize(inp, (new_height, new_width), anti_aliasing=True)
|
55 |
|
56 |
def predict(self, inp, scaling_factor: float):
|
57 |
+
try:
|
58 |
+
if inp is None:
|
59 |
+
print("Error: Input image is None")
|
60 |
+
return None, None
|
61 |
+
|
62 |
+
# Normalize the input and convert to tensor
|
63 |
+
inp = self.normalize_fov(inp)
|
64 |
+
original_shape = inp.shape
|
65 |
+
# Resize the input image to the expected cell diameter
|
66 |
+
inp = apply_rescale_image(inp, scaling_factor)
|
67 |
+
|
68 |
+
# Convert the input to a tensor
|
69 |
+
inp = torch.from_numpy(np.array(inp).astype(np.float32))
|
70 |
+
|
71 |
+
# Prepare the input dictionary and move input to the correct device (GPU or CPU)
|
72 |
+
test_dict = dict(
|
73 |
+
index=None,
|
74 |
+
source=inp.unsqueeze(0).unsqueeze(0).unsqueeze(0).to(self.device),
|
75 |
+
)
|
76 |
|
77 |
+
# Run model inference
|
78 |
+
with torch.inference_mode():
|
79 |
+
self.model.on_predict_start() # Necessary preprocessing for the model
|
80 |
+
pred = (
|
81 |
+
self.model.predict_step(test_dict, 0, 0).cpu().numpy()
|
82 |
+
) # Move output back to CPU for post-processing
|
83 |
|
84 |
+
# Post-process the model output and rescale intensity
|
85 |
+
nuc_pred = pred[0, 0, 0]
|
86 |
+
mem_pred = pred[0, 1, 0]
|
87 |
|
88 |
+
# Resize predictions back to the original image size
|
89 |
+
nuc_pred = resize(nuc_pred, original_shape, anti_aliasing=True)
|
90 |
+
mem_pred = resize(mem_pred, original_shape, anti_aliasing=True)
|
91 |
|
92 |
+
# Define colormaps
|
93 |
+
green_colormap = cmap.Colormap("green") # Nucleus: black to green
|
94 |
+
magenta_colormap = cmap.Colormap("magenta")
|
95 |
|
96 |
+
# Apply the colormap to the predictions
|
97 |
+
nuc_rgb = apply_colormap(nuc_pred, green_colormap)
|
98 |
+
mem_rgb = apply_colormap(mem_pred, magenta_colormap)
|
99 |
|
100 |
+
return nuc_rgb, mem_rgb # Return both nucleus and membrane images
|
101 |
+
except Exception as e:
|
102 |
+
print(f"Error during prediction: {e}")
|
103 |
+
# Return empty images of the right shape and type in case of error
|
104 |
+
empty_img = np.zeros((300, 300, 3), dtype=np.uint8)
|
105 |
+
return empty_img, empty_img
|
106 |
|
107 |
|
108 |
def apply_colormap(prediction, colormap: cmap.Colormap):
|
|
|
163 |
|
164 |
|
165 |
if __name__ == "__main__":
|
166 |
+
try:
|
167 |
+
# Download the model checkpoint from Hugging Face
|
168 |
+
print("Downloading model checkpoint...")
|
169 |
+
model_ckpt_path = hf_hub_download(
|
170 |
+
repo_id="compmicro-czb/VSCyto2D", filename="epoch=399-step=23200.ckpt"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
171 |
)
|
172 |
+
print(f"Model downloaded successfully to: {model_ckpt_path}")
|
173 |
+
|
174 |
+
# Model configuration
|
175 |
+
model_config = {
|
176 |
+
"in_channels": 1,
|
177 |
+
"out_channels": 2,
|
178 |
+
"encoder_blocks": [3, 3, 9, 3],
|
179 |
+
"dims": [96, 192, 384, 768],
|
180 |
+
"decoder_conv_blocks": 2,
|
181 |
+
"stem_kernel_size": [1, 2, 2],
|
182 |
+
"in_stack_depth": 1,
|
183 |
+
"pretraining": False,
|
184 |
+
}
|
185 |
+
|
186 |
+
print("Initializing VSGradio...")
|
187 |
+
vsgradio = VSGradio(model_config, model_ckpt_path)
|
188 |
+
print(f"VSGradio initialized successfully! Using device: {vsgradio.device}")
|
189 |
+
|
190 |
+
# Initialize the Gradio app using Blocks
|
191 |
+
with gr.Blocks(css=load_css("style.css")) as demo:
|
192 |
+
# Title and description
|
193 |
+
gr.HTML(
|
194 |
+
"""
|
195 |
+
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
|
196 |
+
<a href="https://www.czbiohub.org/sf/" target="_blank">
|
197 |
+
<img src="https://huggingface.co/spaces/compmicro-czb/VirtualStaining/resolve/main/misc/czb_mark.png" style="width: 100px; height: auto; margin-right: 10px;">
|
198 |
+
</a>
|
199 |
+
<div class='title-block'> Robust virtual staining of landmark organelles with Cytoland </div>
|
200 |
+
</div>
|
201 |
+
"""
|
202 |
+
)
|
203 |
+
gr.HTML(
|
204 |
+
"""
|
205 |
+
<div class='description-block'>
|
206 |
+
<p><b>Model:</b> VSCyto2D</p>
|
207 |
+
<p><b>Input:</b> label-free image (e.g., QPI or phase contrast).</p>
|
208 |
+
<p><b>Output:</b> Virtual staining of nucleus and membrane.</p>
|
209 |
+
<p><b>Note:</b> The model works well with QPI, and sometimes generalizes to phase contrast and DIC.<br>
|
210 |
+
It was trained primarily on HEK293T, BJ5, and A549 cells imaged at 20x. <br>
|
211 |
+
We continue to diagnose and improve generalization<p>
|
212 |
+
<p>Check out our preprint: <a href='https://www.biorxiv.org/content/10.1101/2024.05.31.596901' target='_blank'><i>Liu et al., Robust virtual staining of landmark organelles</i></a></p>
|
213 |
+
<p> For training your own model and analyzing large amounts of data, use our <a href='https://github.com/mehta-lab/VisCy/tree/main/examples/virtual_staining/dlmbl_exercise' target='_blank'>GitHub repository</a>.</p>
|
214 |
+
</div>
|
215 |
+
"""
|
216 |
)
|
217 |
|
218 |
+
# Layout for input and output images
|
219 |
+
with gr.Row():
|
220 |
+
input_image = gr.Image(
|
221 |
+
type="numpy", image_mode="L", label="Upload Image"
|
222 |
)
|
223 |
+
adjusted_image = gr.Image(
|
224 |
+
type="numpy",
|
225 |
+
image_mode="L",
|
226 |
+
label="Adjusted Image (Preview)",
|
227 |
+
interactive=False,
|
228 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
229 |
|
230 |
+
with gr.Column():
|
231 |
+
output_nucleus = gr.Image(
|
232 |
+
type="numpy", image_mode="RGB", label="VS Nucleus"
|
233 |
+
)
|
234 |
+
output_membrane = gr.Image(
|
235 |
+
type="numpy", image_mode="RGB", label="VS Membrane"
|
236 |
+
)
|
237 |
+
merged_image = gr.Image(
|
238 |
+
type="numpy",
|
239 |
+
image_mode="RGB",
|
240 |
+
label="Merged Image",
|
241 |
+
visible=False,
|
242 |
+
)
|
243 |
+
|
244 |
+
# Checkbox for applying invert
|
245 |
+
preprocess_invert = gr.Checkbox(label="Invert Image", value=False)
|
246 |
+
|
247 |
+
# Slider for gamma adjustment
|
248 |
+
gamma_factor = gr.Slider(
|
249 |
+
label="Adjust Gamma", minimum=0.01, maximum=5.0, value=1.0, step=0.1
|
250 |
+
)
|
251 |
|
252 |
+
# Input field for the cell diameter in microns
|
253 |
+
scaling_factor = gr.Textbox(
|
254 |
+
label="Rescaling image factor",
|
255 |
+
value="1.0",
|
256 |
+
placeholder="Rescaling factor for the input image",
|
257 |
+
)
|
258 |
|
259 |
+
# Checkbox for merging predictions
|
260 |
+
merge_checkbox = gr.Checkbox(
|
261 |
+
label="Merge Predictions into one image", value=True
|
262 |
+
)
|
|
|
263 |
|
264 |
+
input_image.change(
|
265 |
+
fn=apply_image_adjustments,
|
266 |
+
inputs=[input_image, preprocess_invert, gamma_factor],
|
267 |
+
outputs=adjusted_image,
|
268 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
269 |
|
270 |
+
gamma_factor.change(
|
271 |
+
fn=apply_image_adjustments,
|
272 |
+
inputs=[input_image, preprocess_invert, gamma_factor],
|
273 |
+
outputs=adjusted_image,
|
274 |
+
)
|
275 |
+
cell_name = gr.Textbox(
|
276 |
+
label="Cell Name", placeholder="Cell Type", visible=False
|
277 |
+
)
|
278 |
+
imaging_modality = gr.Textbox(
|
279 |
+
label="Imaging Modality", placeholder="Imaging Modality", visible=False
|
280 |
+
)
|
281 |
+
references = gr.Textbox(
|
282 |
+
label="References", placeholder="References", visible=False
|
283 |
+
)
|
284 |
|
285 |
+
preprocess_invert.change(
|
286 |
+
fn=apply_image_adjustments,
|
287 |
+
inputs=[input_image, preprocess_invert, gamma_factor],
|
288 |
+
outputs=adjusted_image,
|
289 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
290 |
|
291 |
+
# Button to trigger prediction and update the output images
|
292 |
+
submit_button = gr.Button(
|
293 |
+
"Virtually Stain Image", elem_classes=["submit-button"]
|
294 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
295 |
|
296 |
+
# Function to handle prediction and merging if needed
|
297 |
+
def submit_and_merge(inp, scaling_factor, merge):
|
298 |
+
nucleus, membrane = vsgradio.predict(inp, scaling_factor)
|
299 |
+
if merge:
|
300 |
+
merged = merge_images(nucleus, membrane)
|
301 |
+
return (
|
302 |
+
merged,
|
303 |
+
gr.update(visible=True),
|
304 |
+
nucleus,
|
305 |
+
gr.update(visible=False),
|
306 |
+
membrane,
|
307 |
+
gr.update(visible=False),
|
308 |
+
)
|
309 |
+
else:
|
310 |
+
return (
|
311 |
+
None,
|
312 |
+
gr.update(visible=False),
|
313 |
+
nucleus,
|
314 |
+
gr.update(visible=True),
|
315 |
+
membrane,
|
316 |
+
gr.update(visible=True),
|
317 |
+
)
|
318 |
+
|
319 |
+
submit_button.click(
|
320 |
+
fn=submit_and_merge,
|
321 |
+
inputs=[adjusted_image, scaling_factor, merge_checkbox],
|
322 |
+
outputs=[
|
323 |
+
merged_image,
|
324 |
+
merged_image,
|
325 |
+
output_nucleus,
|
326 |
+
output_nucleus,
|
327 |
+
output_membrane,
|
328 |
+
output_membrane,
|
329 |
+
],
|
330 |
+
)
|
331 |
+
# Clear everything when the input image changes
|
332 |
+
input_image.change(
|
333 |
+
fn=clear_outputs,
|
334 |
+
inputs=input_image,
|
335 |
+
outputs=[adjusted_image, output_nucleus, output_membrane],
|
336 |
+
)
|
337 |
|
338 |
+
# Function to handle merging the two predictions after they are shown
|
339 |
+
def merge_predictions_fn(nucleus_image, membrane_image, merge):
|
340 |
+
if merge:
|
341 |
+
merged = merge_images(nucleus_image, membrane_image)
|
342 |
+
return (
|
343 |
+
merged,
|
344 |
+
gr.update(visible=True),
|
345 |
+
gr.update(visible=False),
|
346 |
+
gr.update(visible=False),
|
347 |
+
)
|
348 |
+
else:
|
349 |
+
return (
|
350 |
+
None,
|
351 |
+
gr.update(visible=False),
|
352 |
+
gr.update(visible=True),
|
353 |
+
gr.update(visible=True),
|
354 |
+
)
|
355 |
+
|
356 |
+
# Toggle between merged and separate views when the checkbox is checked
|
357 |
+
merge_checkbox.change(
|
358 |
+
fn=merge_predictions_fn,
|
359 |
+
inputs=[output_nucleus, output_membrane, merge_checkbox],
|
360 |
+
outputs=[merged_image, merged_image, output_nucleus, output_membrane],
|
361 |
+
)
|
362 |
|
363 |
+
# Example images and article
|
364 |
+
examples_component = gr.Examples(
|
365 |
+
examples=[
|
366 |
+
["examples/a549.png", "A549", "QPI", 1.0, False, "1.0", "1"],
|
367 |
+
["examples/hek.png", "HEK293T", "QPI", 1.0, False, "1.0", "1"],
|
368 |
+
["examples/HEK_PhC.png", "HEK293T", "PhC", 1.2, True, "1.0", "1"],
|
369 |
+
[
|
370 |
+
"examples/livecell_A172.png",
|
371 |
+
"A172",
|
372 |
+
"PhC",
|
373 |
+
1.0,
|
374 |
+
True,
|
375 |
+
"1.0",
|
376 |
+
"2",
|
377 |
+
],
|
378 |
+
["examples/ctc_HeLa.png", "HeLa", "DIC", 0.7, False, "0.7", "3"],
|
379 |
+
[
|
380 |
+
"examples/ctc_glioblastoma_astrocytoma_U373.png",
|
381 |
+
"Glioblastoma",
|
382 |
+
"PhC",
|
383 |
+
1.0,
|
384 |
+
True,
|
385 |
+
"2.0",
|
386 |
+
"3",
|
387 |
+
],
|
388 |
+
[
|
389 |
+
"examples/U2OS_BF.png",
|
390 |
+
"U2OS",
|
391 |
+
"Brightfield",
|
392 |
+
1.0,
|
393 |
+
False,
|
394 |
+
"0.3",
|
395 |
+
"4",
|
396 |
+
],
|
397 |
+
["examples/U2OS_QPI.png", "U2OS", "QPI", 1.0, False, "0.3", "4"],
|
398 |
+
[
|
399 |
+
"examples/neuromast2.png",
|
400 |
+
"Zebrafish neuromast",
|
401 |
+
"QPI",
|
402 |
+
0.6,
|
403 |
+
False,
|
404 |
+
"1.2",
|
405 |
+
"1",
|
406 |
+
],
|
407 |
+
[
|
408 |
+
"examples/mousekidney.png",
|
409 |
+
"Mouse Kidney",
|
410 |
+
"QPI",
|
411 |
+
0.8,
|
412 |
+
False,
|
413 |
+
"0.6",
|
414 |
+
"4",
|
415 |
+
],
|
416 |
],
|
417 |
+
inputs=[
|
418 |
+
input_image,
|
419 |
+
cell_name,
|
420 |
+
imaging_modality,
|
421 |
+
gamma_factor,
|
422 |
+
preprocess_invert,
|
423 |
+
scaling_factor,
|
424 |
+
references,
|
|
|
|
|
425 |
],
|
426 |
+
)
|
427 |
+
# Article or footer information
|
428 |
+
gr.HTML(
|
429 |
+
"""
|
430 |
+
<div class='article-block'>
|
431 |
+
<li>1. <a href='https://www.biorxiv.org/content/10.1101/2024.05.31.596901' target='_blank'>Liu et al., Robust virtual staining of landmark organelles</a></li>
|
432 |
+
<li>2. <a href='https://sartorius-research.github.io/LIVECell/' target='_blank'>Edlund et. al. LIVECEll-A large-scale dataset for label-free live cell segmentation</a></li>
|
433 |
+
<li>3. <a href='https://celltrackingchallenge.net/' target='_blank'>Maska et. al.,The cell tracking challenge: 10 years of objective benchmarking </a></li>
|
434 |
+
<li>4. <a href='https://elifesciences.org/articles/55502' target='_blank'>Guo et. al., Revealing architectural order with quantitative label-free imaging and deep learning</a></li>
|
435 |
+
</div>
|
436 |
+
"""
|
437 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
438 |
|
439 |
+
# Launch the Gradio app
|
440 |
+
demo.launch()
|
441 |
+
except Exception as e:
|
442 |
+
print(f"Error initializing VSGradio: {e}")
|
style.css
CHANGED
@@ -27,3 +27,22 @@
|
|
27 |
margin-top: 30px;
|
28 |
/* No color or background settings */
|
29 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
margin-top: 30px;
|
28 |
/* No color or background settings */
|
29 |
}
|
30 |
+
|
31 |
+
/* Prominent Submit Button */
|
32 |
+
.submit-button {
|
33 |
+
background-color: #007bff !important;
|
34 |
+
color: white !important;
|
35 |
+
font-size: 18px !important;
|
36 |
+
font-weight: bold !important;
|
37 |
+
padding: 12px 24px !important;
|
38 |
+
border-radius: 8px !important;
|
39 |
+
margin: 15px auto !important;
|
40 |
+
display: block !important;
|
41 |
+
transition: background-color 0.3s ease !important;
|
42 |
+
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1) !important;
|
43 |
+
}
|
44 |
+
|
45 |
+
.submit-button:hover {
|
46 |
+
background-color: #0056b3 !important;
|
47 |
+
box-shadow: 0 6px 8px rgba(0, 0, 0, 0.15) !important;
|
48 |
+
}
|