Spaces:
Runtime error
Runtime error
| import json | |
| import torch | |
| from diffusers import EulerAncestralDiscreteScheduler, DDPMScheduler | |
| from dataclasses import dataclass | |
| from custum_3d_diffusion.modules import register | |
| from custum_3d_diffusion.trainings.image2mvimage_trainer import Image2MVImageTrainer | |
| from custum_3d_diffusion.custum_pipeline.unifield_pipeline_img2img import StableDiffusionImageCustomPipeline | |
| from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput | |
| def get_HW(resolution): | |
| if isinstance(resolution, str): | |
| resolution = json.loads(resolution) | |
| if isinstance(resolution, int): | |
| H = W = resolution | |
| elif isinstance(resolution, list): | |
| H, W = resolution | |
| return H, W | |
| class Image2ImageTrainer(Image2MVImageTrainer): | |
| """ | |
| Trainer for simple image to multiview images. | |
| """ | |
| class TrainerConfig(Image2MVImageTrainer.TrainerConfig): | |
| trainer_name: str = "image2image" | |
| cfg: TrainerConfig | |
| def forward_step(self, batch, unet, shared_modules, noise_scheduler: DDPMScheduler, global_step) -> torch.Tensor: | |
| raise NotImplementedError() | |
| def construct_pipeline(self, shared_modules, unet, old_version=False): | |
| MyPipeline = StableDiffusionImageCustomPipeline | |
| pipeline = MyPipeline.from_pretrained( | |
| self.cfg.pretrained_model_name_or_path, | |
| vae=shared_modules['vae'], | |
| image_encoder=shared_modules['image_encoder'], | |
| feature_extractor=shared_modules['feature_extractor'], | |
| unet=unet, | |
| safety_checker=None, | |
| torch_dtype=self.weight_dtype, | |
| latents_offset=self.cfg.latents_offset, | |
| noisy_cond_latents=self.cfg.noisy_condition_input, | |
| ) | |
| pipeline.set_progress_bar_config(disable=True) | |
| scheduler_dict = {} | |
| if self.cfg.zero_snr: | |
| scheduler_dict.update(rescale_betas_zero_snr=True) | |
| if self.cfg.linear_beta_schedule: | |
| scheduler_dict.update(beta_schedule='linear') | |
| pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(pipeline.scheduler.config, **scheduler_dict) | |
| return pipeline | |
| def get_forward_args(self): | |
| if self.cfg.seed is None: | |
| generator = None | |
| else: | |
| generator = torch.Generator(device=self.accelerator.device).manual_seed(self.cfg.seed) | |
| H, W = get_HW(self.cfg.resolution) | |
| H_cond, W_cond = get_HW(self.cfg.condition_image_resolution) | |
| forward_args = dict( | |
| num_images_per_prompt=1, | |
| num_inference_steps=20, | |
| height=H, | |
| width=W, | |
| height_cond=H_cond, | |
| width_cond=W_cond, | |
| generator=generator, | |
| ) | |
| if self.cfg.zero_snr: | |
| forward_args.update(guidance_rescale=0.7) | |
| return forward_args | |
| def pipeline_forward(self, pipeline, **pipeline_call_kwargs) -> StableDiffusionPipelineOutput: | |
| forward_args = self.get_forward_args() | |
| forward_args.update(pipeline_call_kwargs) | |
| return pipeline(**forward_args) | |
| def batched_validation_forward(self, pipeline, **pipeline_call_kwargs) -> tuple: | |
| raise NotImplementedError() |