Update app.py
Browse files
app.py
CHANGED
@@ -8,34 +8,6 @@ import pandas as pd
|
|
8 |
|
9 |
from Gradio_UI import GradioUI
|
10 |
|
11 |
-
# Below is an example of a tool that does nothing. Amaze us with your creativity !
|
12 |
-
@tool
|
13 |
-
def f1_tack_getter(track_name: str)-> str: #it's import to specify the return type
|
14 |
-
#Keep this format for the description / args / args description but feel free to modify the tool
|
15 |
-
"""
|
16 |
-
Returns data for a specified race
|
17 |
-
Args:
|
18 |
-
track_name: A string respresenting a valid track name from the 2024 F1 calendar
|
19 |
-
"""
|
20 |
-
df = pd.read_csv('./Formula1_2024season_raceResults.csv')
|
21 |
-
return df.groupby('Track').get_group(track_name)
|
22 |
-
|
23 |
-
@tool
|
24 |
-
def get_current_time_in_timezone(timezone: str) -> str:
|
25 |
-
"""A tool that fetches the current local time in a specified timezone.
|
26 |
-
Args:
|
27 |
-
timezone: A string representing a valid timezone (e.g., 'America/New_York').
|
28 |
-
"""
|
29 |
-
try:
|
30 |
-
# Create timezone object
|
31 |
-
tz = pytz.timezone(timezone)
|
32 |
-
# Get current time in that timezone
|
33 |
-
local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S")
|
34 |
-
return f"The current local time in {timezone} is: {local_time}"
|
35 |
-
except Exception as e:
|
36 |
-
return f"Error fetching time for timezone '{timezone}': {str(e)}"
|
37 |
-
|
38 |
-
|
39 |
final_answer = FinalAnswerTool()
|
40 |
|
41 |
# If the agent does not answer, the model is overloaded, please use another model or the following Hugging Face Endpoint that also contains qwen2.5 coder:
|
@@ -48,16 +20,34 @@ model_id='Qwen/Qwen2.5-Coder-32B-Instruct',# it is possible that this model may
|
|
48 |
custom_role_conversions=None,
|
49 |
)
|
50 |
|
51 |
-
|
52 |
-
#
|
53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
with open("prompts.yaml", 'r') as stream:
|
56 |
prompt_templates = yaml.safe_load(stream)
|
57 |
|
58 |
agent = CodeAgent(
|
59 |
model=model,
|
60 |
-
tools=[
|
61 |
max_steps=6,
|
62 |
verbosity_level=1,
|
63 |
grammar=None,
|
|
|
8 |
|
9 |
from Gradio_UI import GradioUI
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
final_answer = FinalAnswerTool()
|
12 |
|
13 |
# If the agent does not answer, the model is overloaded, please use another model or the following Hugging Face Endpoint that also contains qwen2.5 coder:
|
|
|
20 |
custom_role_conversions=None,
|
21 |
)
|
22 |
|
23 |
+
@tool
|
24 |
+
def f1_tackinfo_getter(track_name: str)-> str: #it's import to specify the return type
|
25 |
+
#Keep this format for the description / args / args description but feel free to modify the tool
|
26 |
+
"""
|
27 |
+
Returns data for a specified race
|
28 |
+
Args:
|
29 |
+
track_name: A string respresenting a valid track name from the 2024 F1 calendar
|
30 |
+
Returns:
|
31 |
+
A string with information about the given race
|
32 |
+
"""
|
33 |
+
df = pd.read_csv('./Formula1_2024season_raceResults.csv')
|
34 |
+
info = str(df.groupby('Track').get_group(track_name))
|
35 |
+
client = InferenceClient("meta-llama/Llama-3.2-3B-Instruct")
|
36 |
+
system_prompt = "You are an expert in F1 race analysis. You will be given data about a race and your goal is to provide a concise analysis of these recults"
|
37 |
+
output = client.chat.completions.create(
|
38 |
+
messages = [
|
39 |
+
{'role': 'system', 'content': system_prompt},
|
40 |
+
{'role': 'user', 'content': f'Here is the data about the race: {info}'}
|
41 |
+
]
|
42 |
+
)
|
43 |
+
return output.choices[0].message.content
|
44 |
|
45 |
with open("prompts.yaml", 'r') as stream:
|
46 |
prompt_templates = yaml.safe_load(stream)
|
47 |
|
48 |
agent = CodeAgent(
|
49 |
model=model,
|
50 |
+
tools=[f1_tackinfo_getter, final_answer], ## add your tools here (don't remove final answer)
|
51 |
max_steps=6,
|
52 |
verbosity_level=1,
|
53 |
grammar=None,
|