|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from functools import partial |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
from timm.models.vision_transformer import PatchEmbed, Block, Mlp, DropPath |
|
|
|
from util.pos_embed import get_2d_sincos_pos_embed |
|
|
|
class MCCDecoderAttention(nn.Module): |
|
def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0., args=None): |
|
super().__init__() |
|
assert dim % num_heads == 0, 'dim should be divisible by num_heads' |
|
self.num_heads = num_heads |
|
head_dim = dim // num_heads |
|
self.scale = head_dim ** -0.5 |
|
|
|
self.args = args |
|
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) |
|
self.attn_drop = nn.Dropout(attn_drop) |
|
self.proj = nn.Linear(dim, dim) |
|
self.proj_drop = nn.Dropout(proj_drop) |
|
|
|
def forward(self, x, unseen_size): |
|
B, N, C = x.shape |
|
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) |
|
q, k, v = qkv.unbind(0) |
|
attn = (q @ k.transpose(-2, -1)) * self.scale |
|
|
|
mask = torch.zeros((1, 1, N, N), device=attn.device) |
|
mask[:, :, :, -unseen_size:] = float('-inf') |
|
for i in range(unseen_size): |
|
mask[:, :, -(i + 1), -(i + 1)] = 0 |
|
attn = attn + mask |
|
attn = attn.softmax(dim=-1) |
|
|
|
attn = self.attn_drop(attn) |
|
|
|
x = (attn @ v).transpose(1, 2).reshape(B, N, C) |
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
return x |
|
|
|
class MCCDecoderBlock(nn.Module): |
|
|
|
def __init__( |
|
self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0., init_values=None, |
|
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, args=None): |
|
super().__init__() |
|
self.args = args |
|
self.norm1 = norm_layer(dim) |
|
self.attn = MCCDecoderAttention(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop, args=args) |
|
self.ls1 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity() |
|
self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
|
|
self.norm2 = norm_layer(dim) |
|
mlp_hidden_dim = int(dim * mlp_ratio) |
|
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) |
|
self.ls2 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity() |
|
self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
|
|
def forward(self, x, unseen_size): |
|
x = x + self.drop_path1(self.ls1(self.attn(self.norm1(x), unseen_size))) |
|
x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x)))) |
|
return x |
|
|
|
|
|
class XYZPosEmbed(nn.Module): |
|
""" Masked Autoencoder with VisionTransformer backbone |
|
""" |
|
def __init__(self, embed_dim): |
|
super().__init__() |
|
self.embed_dim = embed_dim |
|
|
|
self.two_d_pos_embed = nn.Parameter( |
|
torch.zeros(1, 64 + 1, embed_dim), requires_grad=False) |
|
|
|
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) |
|
self.win_size = 8 |
|
|
|
self.pos_embed = nn.Linear(3, embed_dim) |
|
|
|
self.blocks = nn.ModuleList([ |
|
Block(embed_dim, num_heads=12, mlp_ratio=2.0, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6)) |
|
for _ in range(1) |
|
]) |
|
|
|
self.invalid_xyz_token = nn.Parameter(torch.zeros(embed_dim,)) |
|
|
|
self.initialize_weights() |
|
|
|
def initialize_weights(self): |
|
torch.nn.init.normal_(self.cls_token, std=.02) |
|
|
|
two_d_pos_embed = get_2d_sincos_pos_embed(self.two_d_pos_embed.shape[-1], 8, cls_token=True) |
|
self.two_d_pos_embed.data.copy_(torch.from_numpy(two_d_pos_embed).float().unsqueeze(0)) |
|
|
|
torch.nn.init.normal_(self.invalid_xyz_token, std=.02) |
|
|
|
def forward(self, seen_xyz, valid_seen_xyz): |
|
emb = self.pos_embed(seen_xyz) |
|
|
|
emb[~valid_seen_xyz] = 0.0 |
|
emb[~valid_seen_xyz] += self.invalid_xyz_token |
|
|
|
B, H, W, C = emb.shape |
|
emb = emb.view(B, H // self.win_size, self.win_size, W // self.win_size, self.win_size, C) |
|
emb = emb.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, self.win_size * self.win_size, C) |
|
|
|
emb = emb + self.two_d_pos_embed[:, 1:, :] |
|
cls_token = self.cls_token + self.two_d_pos_embed[:, :1, :] |
|
|
|
cls_tokens = cls_token.expand(emb.shape[0], -1, -1) |
|
emb = torch.cat((cls_tokens, emb), dim=1) |
|
for _, blk in enumerate(self.blocks): |
|
emb = blk(emb) |
|
return emb[:, 0].view(B, (H // self.win_size) * (W // self.win_size), -1) |
|
|
|
|
|
class DecodeXYZPosEmbed(nn.Module): |
|
""" Masked Autoencoder with VisionTransformer backbone |
|
""" |
|
def __init__(self, embed_dim): |
|
super().__init__() |
|
self.embed_dim = embed_dim |
|
self.pos_embed = nn.Linear(3, embed_dim) |
|
|
|
def forward(self, unseen_xyz): |
|
return self.pos_embed(unseen_xyz) |
|
|
|
|
|
class MCC(nn.Module): |
|
""" Masked Autoencoder with VisionTransformer backbone |
|
""" |
|
def __init__(self, |
|
img_size=224, patch_size=16, in_chans=3, |
|
embed_dim=1024, depth=24, num_heads=16, |
|
decoder_embed_dim=512, decoder_depth=8, decoder_num_heads=16, |
|
mlp_ratio=4., norm_layer=nn.LayerNorm, |
|
rgb_weight=1.0, occupancy_weight=1.0, args=None): |
|
super().__init__() |
|
|
|
self.rgb_weight = rgb_weight |
|
self.occupancy_weight = occupancy_weight |
|
self.args = args |
|
|
|
|
|
|
|
self.patch_embed = PatchEmbed(img_size, patch_size, in_chans, embed_dim) |
|
num_patches = self.patch_embed.num_patches |
|
|
|
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) |
|
self.cls_token_xyz = nn.Parameter(torch.zeros(1, 1, embed_dim)) |
|
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim), requires_grad=False) |
|
|
|
self.xyz_pos_embed = XYZPosEmbed(embed_dim) |
|
|
|
self.blocks = nn.ModuleList([ |
|
Block( |
|
embed_dim, num_heads, mlp_ratio, qkv_bias=True, norm_layer=norm_layer, |
|
drop_path=args.drop_path |
|
) for i in range(depth)]) |
|
|
|
self.blocks_xyz = nn.ModuleList([ |
|
Block( |
|
embed_dim, num_heads, mlp_ratio, qkv_bias=True, norm_layer=norm_layer, |
|
drop_path=args.drop_path |
|
) for i in range(depth)]) |
|
|
|
self.norm = norm_layer(embed_dim) |
|
self.norm_xyz = norm_layer(embed_dim) |
|
self.cached_enc_feat = None |
|
|
|
|
|
|
|
self.decoder_embed = nn.Linear( |
|
embed_dim * 2, |
|
decoder_embed_dim, |
|
bias=True |
|
) |
|
|
|
self.decoder_xyz_pos_embed = DecodeXYZPosEmbed(decoder_embed_dim) |
|
self.decoder_pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, decoder_embed_dim), requires_grad=False) |
|
|
|
self.decoder_blocks = nn.ModuleList([ |
|
MCCDecoderBlock( |
|
decoder_embed_dim, decoder_num_heads, mlp_ratio, qkv_bias=True, norm_layer=norm_layer, |
|
drop_path=args.drop_path, |
|
args=args, |
|
) for i in range(decoder_depth)]) |
|
|
|
self.decoder_norm = norm_layer(decoder_embed_dim) |
|
if self.args.regress_color: |
|
self.decoder_pred = nn.Linear(decoder_embed_dim, 3 + 1, bias=True) |
|
else: |
|
self.decoder_pred = nn.Linear(decoder_embed_dim, 256 * 3 + 1, bias=True) |
|
|
|
self.loss_occupy = nn.BCEWithLogitsLoss() |
|
if self.args.regress_color: |
|
self.loss_rgb = nn.MSELoss() |
|
else: |
|
self.loss_rgb = nn.CrossEntropyLoss() |
|
|
|
self.initialize_weights() |
|
|
|
def initialize_weights(self): |
|
|
|
pos_embed = get_2d_sincos_pos_embed(self.pos_embed.shape[-1], int(self.patch_embed.num_patches**.5), cls_token=True) |
|
self.pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0)) |
|
|
|
decoder_pos_embed = get_2d_sincos_pos_embed(self.decoder_pos_embed.shape[-1], int(self.patch_embed.num_patches**.5), cls_token=True) |
|
self.decoder_pos_embed.data.copy_(torch.from_numpy(decoder_pos_embed).float().unsqueeze(0)) |
|
|
|
|
|
w = self.patch_embed.proj.weight.data |
|
torch.nn.init.xavier_uniform_(w.view([w.shape[0], -1])) |
|
|
|
|
|
torch.nn.init.normal_(self.cls_token, std=.02) |
|
torch.nn.init.normal_(self.cls_token_xyz, std=.02) |
|
|
|
|
|
self.apply(self._init_weights) |
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, nn.Linear): |
|
|
|
torch.nn.init.xavier_uniform_(m.weight) |
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.LayerNorm): |
|
nn.init.constant_(m.bias, 0) |
|
nn.init.constant_(m.weight, 1.0) |
|
|
|
|
|
def forward_encoder(self, x, seen_xyz, valid_seen_xyz): |
|
|
|
|
|
x = self.patch_embed(x) |
|
x = x + self.pos_embed[:, 1:, :] |
|
y = self.xyz_pos_embed(seen_xyz, valid_seen_xyz) |
|
|
|
|
|
|
|
cls_token_xyz = self.cls_token_xyz |
|
cls_tokens_xyz = cls_token_xyz.expand(y.shape[0], -1, -1) |
|
|
|
y = torch.cat((cls_tokens_xyz, y), dim=1) |
|
|
|
for blk in self.blocks_xyz: |
|
y = blk(y) |
|
y = self.norm_xyz(y) |
|
|
|
|
|
|
|
cls_token = self.cls_token + self.pos_embed[:, :1, :] |
|
cls_tokens = cls_token.expand(x.shape[0], -1, -1) |
|
|
|
x = torch.cat((cls_tokens, x), dim=1) |
|
|
|
for blk in self.blocks: |
|
x = blk(x) |
|
x = self.norm(x) |
|
|
|
|
|
x = torch.cat([x, y], dim=2) |
|
return x |
|
|
|
def forward_decoder(self, x, unseen_xyz): |
|
|
|
x = self.decoder_embed(x) |
|
x = x + self.decoder_pos_embed |
|
|
|
|
|
unseen_xyz = self.decoder_xyz_pos_embed(unseen_xyz) |
|
x = torch.cat([x, unseen_xyz], dim=1) |
|
|
|
|
|
for blk in self.decoder_blocks: |
|
x = blk(x, unseen_xyz.shape[1]) |
|
|
|
x = self.decoder_norm(x) |
|
|
|
|
|
pred = self.decoder_pred(x) |
|
|
|
pred = pred[:, -unseen_xyz.shape[1]:, :] |
|
|
|
return pred |
|
|
|
def forward_loss(self, pred, unseen_occupy, unseen_rgb): |
|
loss = self.loss_occupy( |
|
pred[:, :, :1].reshape((-1, 1)), |
|
unseen_occupy.reshape((-1, 1)).float() |
|
) * self.occupancy_weight |
|
|
|
if unseen_occupy.sum() > 0: |
|
if self.args.regress_color: |
|
pred_rgb = pred[:, :, 1:][unseen_occupy.bool()] |
|
gt_rgb = unseen_rgb[unseen_occupy.bool()] |
|
else: |
|
pred_rgb = pred[:, :, 1:][unseen_occupy.bool()].reshape((-1, 256)) |
|
gt_rgb = torch.round(unseen_rgb[unseen_occupy.bool()] * 255).long().reshape((-1,)) |
|
|
|
rgb_loss = self.loss_rgb(pred_rgb, gt_rgb) * self.rgb_weight |
|
loss = loss + rgb_loss |
|
return loss |
|
|
|
|
|
def clear_cache(self): |
|
self.cached_enc_feat = None |
|
|
|
def forward(self, seen_images, seen_xyz, unseen_xyz, unseen_rgb, unseen_occupy, valid_seen_xyz, |
|
cache_enc=False): |
|
|
|
unseen_xyz = shrink_points_beyond_threshold(unseen_xyz, self.args.shrink_threshold) |
|
|
|
if self.cached_enc_feat is None: |
|
seen_images = preprocess_img(seen_images) |
|
seen_xyz = shrink_points_beyond_threshold(seen_xyz, self.args.shrink_threshold) |
|
latent = self.forward_encoder(seen_images, seen_xyz, valid_seen_xyz) |
|
|
|
if cache_enc: |
|
if self.cached_enc_feat is None: |
|
self.cached_enc_feat = latent |
|
else: |
|
latent = self.cached_enc_feat |
|
|
|
pred = self.forward_decoder(latent, unseen_xyz) |
|
loss = self.forward_loss(pred, unseen_occupy, unseen_rgb) |
|
return loss, pred |
|
|
|
|
|
def get_mcc_model(**kwargs): |
|
return MCC( |
|
embed_dim=768, depth=12, num_heads=12, |
|
decoder_embed_dim=512, decoder_depth=8, decoder_num_heads=16, |
|
mlp_ratio=4, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs |
|
) |
|
|
|
|
|
def shrink_points_beyond_threshold(xyz, threshold): |
|
xyz = xyz.clone().detach() |
|
dist = (xyz ** 2.0).sum(axis=-1) ** 0.5 |
|
affected = (dist > threshold) * torch.isfinite(dist) |
|
xyz[affected] = xyz[affected] * ( |
|
threshold * (2.0 - threshold / dist[affected]) / dist[affected] |
|
)[..., None] |
|
return xyz |
|
|
|
|
|
def preprocess_img(x): |
|
if x.shape[2] != 224: |
|
assert x.shape[2] == 800 |
|
x = F.interpolate( |
|
x, |
|
scale_factor=224./800., |
|
mode="bilinear", |
|
) |
|
resnet_mean = torch.tensor([0.485, 0.456, 0.406], device=x.device).reshape((1, 3, 1, 1)) |
|
resnet_std = torch.tensor([0.229, 0.224, 0.225], device=x.device).reshape((1, 3, 1, 1)) |
|
imgs_normed = (x - resnet_mean) / resnet_std |
|
return imgs_normed |
|
|
|
|
|
class LayerScale(nn.Module): |
|
def __init__(self, dim, init_values=1e-5, inplace=False): |
|
super().__init__() |
|
self.inplace = inplace |
|
self.gamma = nn.Parameter(init_values * torch.ones(dim)) |
|
|
|
def forward(self, x): |
|
return x.mul_(self.gamma) if self.inplace else x * self.gamma |
|
|