Spaces:
Sleeping
Sleeping
inti
Browse files- app.py +260 -0
- requirements.txt +7 -0
app.py
ADDED
|
@@ -0,0 +1,260 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
import numpy as np
|
| 4 |
+
import pandas as pd
|
| 5 |
+
import copy
|
| 6 |
+
import torch.nn.functional as F
|
| 7 |
+
from collections import defaultdict
|
| 8 |
+
from openprompt import PromptDataLoader, PromptForClassification
|
| 9 |
+
from openprompt.data_utils import InputExample
|
| 10 |
+
from openprompt.prompts import MixedTemplate, SoftVerbalizer
|
| 11 |
+
from transformers import AdamW, get_linear_schedule_with_warmup, XLMRobertaConfig, XLMRobertaTokenizer, XLMRobertaModel, XLMRobertaForMaskedLM, set_seed, AdapterConfig
|
| 12 |
+
from openprompt.plms.utils import TokenizerWrapper
|
| 13 |
+
|
| 14 |
+
import re
|
| 15 |
+
|
| 16 |
+
def check_only_numbers(string):
|
| 17 |
+
return string.isdigit()
|
| 18 |
+
|
| 19 |
+
def remove_symbols_and_numbers(string):
|
| 20 |
+
pattern = r"[-()\"#/@;:<>{}`+=~|_▁.!?,1234567890]"
|
| 21 |
+
clean_string = re.sub(pattern, '', string)
|
| 22 |
+
return clean_string
|
| 23 |
+
|
| 24 |
+
def is_sinhala(char):
|
| 25 |
+
# https://unicode.org/charts/PDF/U0D80.pdf
|
| 26 |
+
return ord(char) >= 0x0D80 and ord(char) <= 0x0DFF
|
| 27 |
+
|
| 28 |
+
def get_chars(word, without_si_modifiers = True):
|
| 29 |
+
mods = [0x0DCA,0x0DCF,0x0DD0,0x0DD1,0x0DD2,0x0DD3,0x0DD4,0x0DD5,0x0DD6,0x0DD7,0x0DD8,0x0DD9,0x0DDA,0x0DDB,0x0DDC,0x0DDD,0x0DDE,0x0DDF,0x0DF2,0x0DF3]
|
| 30 |
+
if without_si_modifiers:
|
| 31 |
+
return [char for char in list(word) if ord(char) not in mods]
|
| 32 |
+
else:
|
| 33 |
+
return list(word)
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
def script_classify(text,en_thresh,si_thresh,without_si_mods):
|
| 37 |
+
script = ""
|
| 38 |
+
tokens = text.split()
|
| 39 |
+
total_chars = 0
|
| 40 |
+
latin_char_count = 0
|
| 41 |
+
sin_char_count = 0
|
| 42 |
+
for t_i,t in enumerate(tokens):
|
| 43 |
+
if check_only_numbers(t):
|
| 44 |
+
continue
|
| 45 |
+
token_list = get_chars(remove_symbols_and_numbers(t),without_si_modifiers = without_si_mods)
|
| 46 |
+
token_len = len(token_list)
|
| 47 |
+
total_chars += token_len
|
| 48 |
+
for ch in token_list:
|
| 49 |
+
if is_sinhala(ch):
|
| 50 |
+
sin_char_count += 1
|
| 51 |
+
else:
|
| 52 |
+
latin_char_count += 1
|
| 53 |
+
if total_chars == 0:
|
| 54 |
+
script = 'Symbol'
|
| 55 |
+
else:
|
| 56 |
+
en_percentage = latin_char_count/total_chars
|
| 57 |
+
si_percentage = sin_char_count/total_chars
|
| 58 |
+
if en_percentage >= en_thresh:
|
| 59 |
+
script = 'Latin'
|
| 60 |
+
elif si_percentage >= si_thresh:
|
| 61 |
+
script = 'Sinhala'
|
| 62 |
+
elif en_percentage < en_thresh and si_percentage < si_thresh:
|
| 63 |
+
script = 'Mixed'
|
| 64 |
+
return script
|
| 65 |
+
|
| 66 |
+
HUMOUR_MODEL_PATH = 'ad-houlsby-humour-seed-42.ckpt'
|
| 67 |
+
SENTIMENT_MODEL_PATH = 'ad-drop-houlsby-11-sentiment-seed-42.ckpt'
|
| 68 |
+
humour_mapping = {
|
| 69 |
+
0: "Non-humourous",
|
| 70 |
+
1:"Humourous"
|
| 71 |
+
}
|
| 72 |
+
|
| 73 |
+
sentiment_mapping = {
|
| 74 |
+
0: "Negative",
|
| 75 |
+
1:"Neutral",
|
| 76 |
+
2:"Positive",
|
| 77 |
+
3:"Conflict"
|
| 78 |
+
}
|
| 79 |
+
|
| 80 |
+
def load_plm(model_name, model_path):
|
| 81 |
+
model_config = XLMRobertaConfig.from_pretrained(model_path)
|
| 82 |
+
model = XLMRobertaForMaskedLM.from_pretrained(model_path, config=model_config)
|
| 83 |
+
tokenizer = XLMRobertaTokenizer.from_pretrained(model_path)
|
| 84 |
+
wrapper = MLMTokenizerWrapper
|
| 85 |
+
return model, tokenizer, wrapper
|
| 86 |
+
|
| 87 |
+
class MLMTokenizerWrapper(TokenizerWrapper):
|
| 88 |
+
add_input_keys = ['input_ids', 'attention_mask', 'token_type_ids']
|
| 89 |
+
|
| 90 |
+
@property
|
| 91 |
+
def mask_token(self):
|
| 92 |
+
return self.tokenizer.mask_token
|
| 93 |
+
|
| 94 |
+
@property
|
| 95 |
+
def mask_token_ids(self):
|
| 96 |
+
return self.tokenizer.mask_token_id
|
| 97 |
+
|
| 98 |
+
@property
|
| 99 |
+
def num_special_tokens_to_add(self):
|
| 100 |
+
if not hasattr(self, '_num_specials'):
|
| 101 |
+
self._num_specials = self.tokenizer.num_special_tokens_to_add()
|
| 102 |
+
return self._num_specials
|
| 103 |
+
|
| 104 |
+
def tokenize_one_example(self, wrapped_example, teacher_forcing):
|
| 105 |
+
wrapped_example, others = wrapped_example
|
| 106 |
+
encoded_tgt_text = []
|
| 107 |
+
if 'tgt_text' in others:
|
| 108 |
+
tgt_text = others['tgt_text']
|
| 109 |
+
if isinstance(tgt_text, str):
|
| 110 |
+
tgt_text = [tgt_text]
|
| 111 |
+
for t in tgt_text:
|
| 112 |
+
encoded_tgt_text.append(self.tokenizer.encode(t, add_special_tokens=False))
|
| 113 |
+
|
| 114 |
+
mask_id = 0 # the i-th the mask token in the template.
|
| 115 |
+
|
| 116 |
+
encoder_inputs = defaultdict(list)
|
| 117 |
+
for piece in wrapped_example:
|
| 118 |
+
if piece['loss_ids']==1:
|
| 119 |
+
if teacher_forcing: # fill the mask with the tgt task
|
| 120 |
+
raise RuntimeError("Masked Language Model can't perform teacher forcing training!")
|
| 121 |
+
else:
|
| 122 |
+
encode_text = [self.mask_token_ids]
|
| 123 |
+
mask_id += 1
|
| 124 |
+
|
| 125 |
+
if piece['text'] in self.special_tokens_maps.keys():
|
| 126 |
+
to_replace = self.special_tokens_maps[piece['text']]
|
| 127 |
+
if to_replace is not None:
|
| 128 |
+
piece['text'] = to_replace
|
| 129 |
+
else:
|
| 130 |
+
raise KeyError("This tokenizer doesn't specify {} token.".format(piece['text']))
|
| 131 |
+
|
| 132 |
+
if 'soft_token_ids' in piece and piece['soft_token_ids']!=0:
|
| 133 |
+
encode_text = [0] # can be replace by any token, since these token will use their own embeddings
|
| 134 |
+
else:
|
| 135 |
+
encode_text = self.tokenizer.encode(piece['text'], add_special_tokens=False)
|
| 136 |
+
|
| 137 |
+
encoding_length = len(encode_text)
|
| 138 |
+
encoder_inputs['input_ids'].append(encode_text)
|
| 139 |
+
for key in piece:
|
| 140 |
+
if key not in ['text']:
|
| 141 |
+
encoder_inputs[key].append([piece[key]]*encoding_length)
|
| 142 |
+
|
| 143 |
+
encoder_inputs = self.truncate(encoder_inputs=encoder_inputs)
|
| 144 |
+
# delete shortenable ids
|
| 145 |
+
encoder_inputs.pop("shortenable_ids")
|
| 146 |
+
encoder_inputs = self.concate_parts(input_dict=encoder_inputs)
|
| 147 |
+
encoder_inputs = self.add_special_tokens(encoder_inputs=encoder_inputs)
|
| 148 |
+
# create special input ids
|
| 149 |
+
encoder_inputs['attention_mask'] = [1] *len(encoder_inputs['input_ids'])
|
| 150 |
+
if self.create_token_type_ids:
|
| 151 |
+
encoder_inputs['token_type_ids'] = [0] *len(encoder_inputs['input_ids'])
|
| 152 |
+
# padding
|
| 153 |
+
encoder_inputs = self.padding(input_dict=encoder_inputs, max_len=self.max_seq_length, pad_id_for_inputs=self.tokenizer.pad_token_id)
|
| 154 |
+
|
| 155 |
+
if len(encoded_tgt_text) > 0:
|
| 156 |
+
encoder_inputs = {**encoder_inputs, "encoded_tgt_text": encoded_tgt_text}# convert defaultdict to dict
|
| 157 |
+
else:
|
| 158 |
+
encoder_inputs = {**encoder_inputs}
|
| 159 |
+
return encoder_inputs
|
| 160 |
+
|
| 161 |
+
|
| 162 |
+
plm, tokenizer, wrapper_class = load_plm("xlm", "xlm-roberta-base")
|
| 163 |
+
plm_copy = copy.deepcopy(plm)
|
| 164 |
+
tokenizer_copy = copy.deepcopy(tokenizer)
|
| 165 |
+
wrapper_class_copy = copy.deepcopy(wrapper_class)
|
| 166 |
+
sent_adapter_name = "Task_Sentiment"
|
| 167 |
+
sent_adapter_config = AdapterConfig.load("houlsby")
|
| 168 |
+
sent_adapter_config.leave_out.extend([11])
|
| 169 |
+
plm.add_adapter(sent_adapter_name, config=sent_adapter_config)
|
| 170 |
+
plm.set_active_adapters(sent_adapter_name)
|
| 171 |
+
plm.train_adapter(sent_adapter_name)
|
| 172 |
+
sent_template = '{"placeholder": "text_a"}. {"soft": "The"} {"soft": "sentiment"} {"soft": "or"} {"soft": "the"} {"soft": "feeling"} {"soft": "of"} {"soft": "the"} {"soft": "given"} {"soft": "sentence"} {"soft": "can"} {"soft": "be"} {"soft": "classified"} {"soft": "as"} {"soft": "positive"} {"soft": ","} {"soft": "negative"} {"soft": "or"} {"soft": "neutral"} {"soft": "."} {"soft": "The"} {"soft": "classified"} {"soft": "sentiment"} {"soft": "of"} {"soft": "the"} {"soft": "sentence"} {"soft": "is"} {"mask"}.'
|
| 173 |
+
sent_promptTemplate = MixedTemplate(model=plm, text = sent_template, tokenizer = tokenizer)
|
| 174 |
+
sent_promptVerbalizer = SoftVerbalizer(tokenizer, plm, num_classes=4)
|
| 175 |
+
sent_promptModel = PromptForClassification(template = sent_promptTemplate, plm = plm, verbalizer = sent_promptVerbalizer)
|
| 176 |
+
sent_promptModel.load_state_dict(torch.load(SENTIMENT_MODEL_PATH,map_location=torch.device('cpu')))
|
| 177 |
+
sent_promptModel.eval()
|
| 178 |
+
|
| 179 |
+
hum_adapter_name = "Ad_Humour"
|
| 180 |
+
hum_adapter_config = AdapterConfig.load("houlsby")
|
| 181 |
+
plm_copy.add_adapter(hum_adapter_name, config=hum_adapter_config)
|
| 182 |
+
plm_copy.set_active_adapters(hum_adapter_name)
|
| 183 |
+
plm_copy.train_adapter(hum_adapter_name)
|
| 184 |
+
hum_template = '{"placeholder": "text_a"}. {"soft": "Capture"} {"soft": "the"} {"soft": "comedic"} {"soft": "elements"} {"soft": "of"} {"soft": "the"} {"soft": "given"} {"soft": "sentence"} {"soft": "and"} {"soft": "classify"} {"soft": "as"} {"soft": "Humorous"} {"soft": ","} {"soft": "otherwise"} {"soft": "classify"} {"soft": "as"} {"soft": "Non-humorous"} {"soft": "."} {"soft": "The"} {"soft": "sentence"} {"soft": "is"} {"mask"}.'
|
| 185 |
+
hum_promptTemplate = MixedTemplate(model=plm_copy, text = hum_template, tokenizer = tokenizer_copy)
|
| 186 |
+
hum_promptVerbalizer = SoftVerbalizer(tokenizer_copy, plm_copy, num_classes=2)
|
| 187 |
+
hum_promptModel = PromptForClassification(template = hum_promptTemplate, plm = plm_copy, verbalizer = hum_promptVerbalizer)
|
| 188 |
+
hum_promptModel.load_state_dict(torch.load(HUMOUR_MODEL_PATH,map_location=torch.device('cpu')))
|
| 189 |
+
hum_promptModel.eval()
|
| 190 |
+
|
| 191 |
+
def sentiment(text):
|
| 192 |
+
pred = None
|
| 193 |
+
dataset = [
|
| 194 |
+
InputExample(
|
| 195 |
+
guid = 0,
|
| 196 |
+
text_a = text,
|
| 197 |
+
)
|
| 198 |
+
]
|
| 199 |
+
data_loader = PromptDataLoader(
|
| 200 |
+
dataset = dataset,
|
| 201 |
+
tokenizer = tokenizer,
|
| 202 |
+
template = sent_promptTemplate,
|
| 203 |
+
tokenizer_wrapper_class=wrapper_class,
|
| 204 |
+
)
|
| 205 |
+
for step, inputs in enumerate(data_loader):
|
| 206 |
+
logits = sent_promptModel(inputs)
|
| 207 |
+
pred = sentiment_mapping[torch.argmax(logits, dim=-1).cpu().tolist()[0]]
|
| 208 |
+
return pred
|
| 209 |
+
|
| 210 |
+
def humour(text):
|
| 211 |
+
pred = None
|
| 212 |
+
dataset = [
|
| 213 |
+
InputExample(
|
| 214 |
+
guid = 0,
|
| 215 |
+
text_a = text,
|
| 216 |
+
)
|
| 217 |
+
]
|
| 218 |
+
data_loader = PromptDataLoader(
|
| 219 |
+
dataset = dataset,
|
| 220 |
+
tokenizer = tokenizer_copy,
|
| 221 |
+
template = hum_promptTemplate,
|
| 222 |
+
tokenizer_wrapper_class=wrapper_class_copy,
|
| 223 |
+
)
|
| 224 |
+
for step, inputs in enumerate(data_loader):
|
| 225 |
+
logits = hum_promptModel(inputs)
|
| 226 |
+
pred = humour_mapping[torch.argmax(logits, dim=-1).cpu().tolist()[0]]
|
| 227 |
+
return pred
|
| 228 |
+
|
| 229 |
+
|
| 230 |
+
def classifier(text, task):
|
| 231 |
+
one_script = script_classify(text,1.0,1.0,True)
|
| 232 |
+
pointnine_script = script_classify(text,0.9,0.9,True)
|
| 233 |
+
if task == "Sentiment Classification":
|
| 234 |
+
return sentiment(text),one_script, pointnine_script
|
| 235 |
+
elif task == "Humour Detection":
|
| 236 |
+
return humour(text),one_script, pointnine_script
|
| 237 |
+
|
| 238 |
+
|
| 239 |
+
demo = gr.Interface(
|
| 240 |
+
title="Use of Prompt-Based Learning For Code-Mixed Text Classification",
|
| 241 |
+
fn=classifier,
|
| 242 |
+
inputs=[
|
| 243 |
+
gr.Textbox(placeholder="Enter an input sentence...",label="Input Sentence"),
|
| 244 |
+
gr.Radio(["Sentiment Classification", "Humour Detection"], label="Task")
|
| 245 |
+
],
|
| 246 |
+
outputs=[
|
| 247 |
+
gr.Label(label="Label"),
|
| 248 |
+
gr.Textbox(label="Script Threshold 100%"),
|
| 249 |
+
gr.Textbox(label="Script Threshold 90%")
|
| 250 |
+
],
|
| 251 |
+
allow_flagging = "never",
|
| 252 |
+
examples=[
|
| 253 |
+
["Mama kamathi cricket matches balanna", "Sentiment Classification"],
|
| 254 |
+
["මම sweet food වලට කැමති නෑ", "Sentiment Classification"],
|
| 255 |
+
["The weather outside is neither too hot nor too cold", "Sentiment Classification"],
|
| 256 |
+
["ඉබ්බයි හාවයි හොඳ යාලුවොලු", "Humour Detection"],
|
| 257 |
+
["Kandy ගොඩක් lassanai", "Humour Detection"]
|
| 258 |
+
])
|
| 259 |
+
|
| 260 |
+
demo.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio
|
| 2 |
+
torch
|
| 3 |
+
numpy
|
| 4 |
+
pandas
|
| 5 |
+
openprompt
|
| 6 |
+
transformers
|
| 7 |
+
adapter-transformers==3.1.0
|