import pandas import numpy import gradio import matplotlib.pyplot import matplotlib.collections data = pandas.read_csv("1-s2.0-S2352340918302014-mmc2.csv") def how_many_designs(team: int, participant: int): n = len(numpy.unique(data[(data['Team'] == team) & (data['Participant'] == participant)]['Design'])) return gradio.Slider.update(1, n, step=1) def print_design(team: int, participant: int, design: int): df = data[(data['Team'] == 1) & (data['Participant'] == 1) & (data['Design'] == design)] nodes = df[df['Component'] > 0] edges = df[df['Component'] < 0] e1 = [int(x) for x in edges['Var1'].values] e2 = [int(x) for x in edges['Var2'].values] all_info = [e1, e2, [0]*len(e1)] idx = numpy.array(all_info).transpose().flatten() x = [None if i == 0 else nodes[nodes['Component'] == i]['Var1'].values[0] for i in idx] y = [None if i == 0 else nodes[nodes['Component'] == i]['Var2'].values[0] for i in idx] fig = matplotlib.pyplot.figure() matplotlib.pyplot.plot(x, y) matplotlib.pyplot.plot(nodes['Var1'].values, nodes['Var2'].values, linestyle='none', marker='o', label="") matplotlib.pyplot.axis('equal') matplotlib.pyplot.xlim([-6.0, 6.0]) matplotlib.pyplot.ylim([-3.0, 5.0]) return fig with gradio.Blocks() as demo: with gradio.Row(): with gradio.Column(): team = gradio.Dropdown(choices=[str(i) for i in range(1,17)], value="1") participant = gradio.Dropdown(choices=[str(i) for i in range(1,4)], value="1") design = gradio.Slider(1, 100, step=1, value=1) with gradio.Column(): output = gradio.Plot() team.change(fn=how_many_designs, inputs=[team, participant], outputs=[design]) participant.change(fn=how_many_designs, inputs=[team, participant], outputs=[design]) participant.change(fn=print_design, inputs=[team, participant, design], outputs=[output]) team.change(fn=print_design, inputs=[team, participant, design], outputs=[output]) design.change(fn=print_design, inputs=[team, participant, design], outputs=[output]) demo.launch(debug=True)