Update app.py
Browse files
app.py
CHANGED
@@ -102,13 +102,10 @@ def filter_semantically_similar_texts_by_embedding(df, mode, embedding_field='em
|
|
102 |
|
103 |
def search_kpi(kpi_query, kpi_count, mode):
|
104 |
if mode == "BGE":
|
105 |
-
print("BGE 검색 시작")
|
106 |
results = kpi_pool_ori.similarity_search_with_relevance_scores(kpi_query, k=50)
|
107 |
elif mode == "SBERT-snunlp":
|
108 |
-
print("SBERT-snunlp 검색 시작")
|
109 |
results = kpi_pool.similarity_search_with_relevance_scores(kpi_query, k=50)
|
110 |
else:
|
111 |
-
print("SBERT-jhgan 검색 시작")
|
112 |
results = kpi_pool2.similarity_search_with_relevance_scores(kpi_query, k=50)
|
113 |
|
114 |
|
@@ -135,13 +132,10 @@ def search_kpi(kpi_query, kpi_count, mode):
|
|
135 |
|
136 |
def search_kpi_one(kpi_query, kpi_count, mode):
|
137 |
if mode == "BGE":
|
138 |
-
print("BGE 검색 시작")
|
139 |
results = kpi_pool_ori.similarity_search_with_relevance_scores(kpi_query, k=50)
|
140 |
elif mode == "SBERT-snunlp":
|
141 |
-
print("SBERT-snunlp 검색 시작")
|
142 |
results = kpi_pool.similarity_search_with_relevance_scores(kpi_query, k=50)
|
143 |
else:
|
144 |
-
print("SBERT-jhgan 검색 시작")
|
145 |
results = kpi_pool2.similarity_search_with_relevance_scores(kpi_query, k=50)
|
146 |
|
147 |
# 메타데이터 + 점수 추출
|
@@ -232,11 +226,10 @@ def generate_excel(df1, df2, df3, kpi_list1, kpi_list2, kpi_list3, kpi_query):
|
|
232 |
if kpi_list:
|
233 |
indices = [int(i) - 1 for i in kpi_list] # -1 보정
|
234 |
filtered = df.iloc[indices].copy()
|
235 |
-
filtered["출처"] = model_name
|
236 |
return filtered
|
237 |
else:
|
238 |
# 선택된 KPI 없을 때: 빈 DataFrame 반환
|
239 |
-
return pd.DataFrame(columns=list(df.columns)
|
240 |
|
241 |
# 인덱스(-1 보정)로 DataFrame 필터링
|
242 |
#filtered_df = df.iloc[[int(i) - 1 for i in kpi_list]] if kpi_list else pd.DataFrame(columns=df.columns)
|
|
|
102 |
|
103 |
def search_kpi(kpi_query, kpi_count, mode):
|
104 |
if mode == "BGE":
|
|
|
105 |
results = kpi_pool_ori.similarity_search_with_relevance_scores(kpi_query, k=50)
|
106 |
elif mode == "SBERT-snunlp":
|
|
|
107 |
results = kpi_pool.similarity_search_with_relevance_scores(kpi_query, k=50)
|
108 |
else:
|
|
|
109 |
results = kpi_pool2.similarity_search_with_relevance_scores(kpi_query, k=50)
|
110 |
|
111 |
|
|
|
132 |
|
133 |
def search_kpi_one(kpi_query, kpi_count, mode):
|
134 |
if mode == "BGE":
|
|
|
135 |
results = kpi_pool_ori.similarity_search_with_relevance_scores(kpi_query, k=50)
|
136 |
elif mode == "SBERT-snunlp":
|
|
|
137 |
results = kpi_pool.similarity_search_with_relevance_scores(kpi_query, k=50)
|
138 |
else:
|
|
|
139 |
results = kpi_pool2.similarity_search_with_relevance_scores(kpi_query, k=50)
|
140 |
|
141 |
# 메타데이터 + 점수 추출
|
|
|
226 |
if kpi_list:
|
227 |
indices = [int(i) - 1 for i in kpi_list] # -1 보정
|
228 |
filtered = df.iloc[indices].copy()
|
|
|
229 |
return filtered
|
230 |
else:
|
231 |
# 선택된 KPI 없을 때: 빈 DataFrame 반환
|
232 |
+
return pd.DataFrame(columns=list(df.columns))
|
233 |
|
234 |
# 인덱스(-1 보정)로 DataFrame 필터링
|
235 |
#filtered_df = df.iloc[[int(i) - 1 for i in kpi_list]] if kpi_list else pd.DataFrame(columns=df.columns)
|