cnp-ai commited on
Commit
f6c6af1
·
verified ·
1 Parent(s): 1fcc752

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +1 -8
app.py CHANGED
@@ -102,13 +102,10 @@ def filter_semantically_similar_texts_by_embedding(df, mode, embedding_field='em
102
 
103
  def search_kpi(kpi_query, kpi_count, mode):
104
  if mode == "BGE":
105
- print("BGE 검색 시작")
106
  results = kpi_pool_ori.similarity_search_with_relevance_scores(kpi_query, k=50)
107
  elif mode == "SBERT-snunlp":
108
- print("SBERT-snunlp 검색 시작")
109
  results = kpi_pool.similarity_search_with_relevance_scores(kpi_query, k=50)
110
  else:
111
- print("SBERT-jhgan 검색 시작")
112
  results = kpi_pool2.similarity_search_with_relevance_scores(kpi_query, k=50)
113
 
114
 
@@ -135,13 +132,10 @@ def search_kpi(kpi_query, kpi_count, mode):
135
 
136
  def search_kpi_one(kpi_query, kpi_count, mode):
137
  if mode == "BGE":
138
- print("BGE 검색 시작")
139
  results = kpi_pool_ori.similarity_search_with_relevance_scores(kpi_query, k=50)
140
  elif mode == "SBERT-snunlp":
141
- print("SBERT-snunlp 검색 시작")
142
  results = kpi_pool.similarity_search_with_relevance_scores(kpi_query, k=50)
143
  else:
144
- print("SBERT-jhgan 검색 시작")
145
  results = kpi_pool2.similarity_search_with_relevance_scores(kpi_query, k=50)
146
 
147
  # 메타데이터 + 점수 추출
@@ -232,11 +226,10 @@ def generate_excel(df1, df2, df3, kpi_list1, kpi_list2, kpi_list3, kpi_query):
232
  if kpi_list:
233
  indices = [int(i) - 1 for i in kpi_list] # -1 보정
234
  filtered = df.iloc[indices].copy()
235
- filtered["출처"] = model_name
236
  return filtered
237
  else:
238
  # 선택된 KPI 없을 때: 빈 DataFrame 반환
239
- return pd.DataFrame(columns=list(df.columns) + ["출처"])
240
 
241
  # 인덱스(-1 보정)로 DataFrame 필터링
242
  #filtered_df = df.iloc[[int(i) - 1 for i in kpi_list]] if kpi_list else pd.DataFrame(columns=df.columns)
 
102
 
103
  def search_kpi(kpi_query, kpi_count, mode):
104
  if mode == "BGE":
 
105
  results = kpi_pool_ori.similarity_search_with_relevance_scores(kpi_query, k=50)
106
  elif mode == "SBERT-snunlp":
 
107
  results = kpi_pool.similarity_search_with_relevance_scores(kpi_query, k=50)
108
  else:
 
109
  results = kpi_pool2.similarity_search_with_relevance_scores(kpi_query, k=50)
110
 
111
 
 
132
 
133
  def search_kpi_one(kpi_query, kpi_count, mode):
134
  if mode == "BGE":
 
135
  results = kpi_pool_ori.similarity_search_with_relevance_scores(kpi_query, k=50)
136
  elif mode == "SBERT-snunlp":
 
137
  results = kpi_pool.similarity_search_with_relevance_scores(kpi_query, k=50)
138
  else:
 
139
  results = kpi_pool2.similarity_search_with_relevance_scores(kpi_query, k=50)
140
 
141
  # 메타데이터 + 점수 추출
 
226
  if kpi_list:
227
  indices = [int(i) - 1 for i in kpi_list] # -1 보정
228
  filtered = df.iloc[indices].copy()
 
229
  return filtered
230
  else:
231
  # 선택된 KPI 없을 때: 빈 DataFrame 반환
232
+ return pd.DataFrame(columns=list(df.columns))
233
 
234
  # 인덱스(-1 보정)로 DataFrame 필터링
235
  #filtered_df = df.iloc[[int(i) - 1 for i in kpi_list]] if kpi_list else pd.DataFrame(columns=df.columns)