cnph001's picture
Update app.py
137112b verified
##fix overlap, remove silence, leave a tiny bit of silence
## Simplified
## Add 0 after prefix make it permanent voice
import spaces
import gradio as gr
import edge_tts
import asyncio
import tempfile
import os
import re
from pathlib import Path
from pydub.silence import detect_nonsilent
from pydub import AudioSegment
default_voice_short= ""
check1 = False # set global variable to check to see if process_text is begin of transcript line or not.
def strip_silence(audio: AudioSegment, silence_thresh=-40, min_silence_len=100, silence_padding_ms=100):
from pydub.silence import detect_nonsilent
# Detect non-silent regions
nonsilent = detect_nonsilent(audio, min_silence_len=min_silence_len, silence_thresh=silence_thresh)
# If no speech is detected, return a small silent audio (not totally empty)
if not nonsilent:
return AudioSegment.silent(duration=silence_padding_ms)
# Start and end of the first and last non-silent segments
start_trim = nonsilent[0][0]
end_trim = nonsilent[-1][1]
# Add padding before and after the trimmed audio
# Ensure the padding doesn't exceed the trimmed boundaries
#if not check1:
# silence_padding_ms=00
start_trim = max(0, start_trim - silence_padding_ms) # Ensure no negative start
end_trim = min(len(audio), end_trim + silence_padding_ms) # Ensure end doesn't go past audio length
# Return the trimmed and padded audio
# Debugging: print input arguments
print(f"Check1: {check1}**")
return audio[start_trim:end_trim]
def get_silence(duration_ms=1000):
# Create silent audio segment with specified parameters
silent_audio = AudioSegment.silent(
duration=duration_ms,
frame_rate=24000 # 24kHz sampling rate
)
# Set audio parameters
silent_audio = silent_audio.set_channels(1) # Mono
silent_audio = silent_audio.set_sample_width(4) # 32-bit (4 bytes per sample)
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
# Export with specific bitrate and codec parameters
silent_audio.export(
tmp_file.name,
format="mp3",
bitrate="48k",
parameters=[
"-ac", "1", # Mono
"-ar", "24000", # Sample rate
"-sample_fmt", "s32", # 32-bit samples
"-codec:a", "libmp3lame" # MP3 codec
]
)
return tmp_file.name
# Get all available voices
async def get_voices():
voices = await edge_tts.list_voices()
return {f"{v['ShortName']} - {v['Locale']} ({v['Gender']})": v['ShortName'] for v in voices}
async def generate_audio_with_voice_prefix(text_segment, default_voice, rate, pitch):
global default_voice_short # Use the global variable
global check1 # Use the global variable
"""Generates audio for a text segment, handling voice prefixes, retries, and fallback."""
print(f"Text: {text_segment}") #Debug
voice_map = {
"1F": ("en-GB-SoniaNeural", 25, 0),
"2F": ("en-US-JennyNeural", 0, 0),
"3F": ("en-HK-YanNeural", 0, 0),
"4F": ("en-US-EmmaNeural", 0, 0),
"1M": ("en-AU-WilliamNeural", 0, 0),
"2M": ("en-GB-RyanNeural", 0, 0),
"3M": ("en-US-BrianMultilingualNeural", 0, 0),
"4M": ("en-GB-ThomasNeural", 0, 0),
"1O": ("en-GB-RyanNeural", -20, -10),
"1C": ("en-GB-MaisieNeural", 0, 0),
"1V": ("vi-VN-HoaiMyNeural", 0, 0),
"2V": ("vi-VN-NamMinhNeural", 0, 0),
"3V": ("en-US-EmmaMultilingualNeural", 0, 0),
"4V": ("en-US-BrianMultilingualNeural", 0, 0),
"5V": ("en-US-AvaMultilingualNeural", 0, 0),
"6V": ("en-US-AndrewMultilingualNeural", 0, 0),
"7V": ("de-DE-SeraphinaMultilingualNeural", 0, 0),
"8V": ("ko-KR-HyunsuMultilingualNeural", 0, 0),
}
if default_voice_short == "":
current_voice_full = default_voice
current_voice_short = current_voice_full.split(" - ")[0] if current_voice_full else ""
else:
current_voice_short = default_voice_short
current_rate = rate
current_pitch = pitch
processed_text = text_segment.strip()
detect = False
prefix = processed_text[:2]
if prefix in voice_map:
current_voice_short, pitch_adj, rate_adj = voice_map[prefix]
current_pitch += pitch_adj
current_rate += rate_adj
detect = True
match = re.search(r'[A-Za-z]+\-?\d+', processed_text)
if match:
group = match.group()
prefix_only = ''.join(filter(str.isalpha, group))
number = int(''.join(ch for ch in group if ch.isdigit() or ch == '-'))
if number == 0:
default_voice_short= current_voice_short
current_pitch += number
processed_text = re.sub(r'[A-Za-z]+\-?\d+', '', processed_text, count=1).strip()
processed_text = processed_text[len(prefix_only):].strip()
elif detect:
processed_text = processed_text[2:].strip()
if processed_text:
rate_str = f"{current_rate:+d}%"
pitch_str = f"{current_pitch:+d}Hz"
# Retry logic
for attempt in range(3):
try:
communicate = edge_tts.Communicate(processed_text, current_voice_short, rate=rate_str, pitch=pitch_str)
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
audio_path = tmp_file.name
await communicate.save(audio_path)
audio = AudioSegment.from_mp3(audio_path)
if not check1:
print(f"not last part of sentence - SHORT silence")
audio = strip_silence(audio, silence_thresh=-40, min_silence_len=50, silence_padding_ms=10) ##silence between sentences
else:
audio = strip_silence(audio, silence_thresh=-40, min_silence_len=100, silence_padding_ms=200) ##less silence for mid-sentence segments
print(f"Last part of sentence - long silence")
stripped_path = tempfile.mktemp(suffix=".mp3")
audio.export(stripped_path, format="mp3")
return stripped_path
except Exception as e:
print(f"Edge TTS Failed# {attempt}:: {e}") #Debug
if attempt == 2:
# Final failure: return 500ms of silence
silent_audio = AudioSegment.silent(duration=500)
fallback_path = tempfile.mktemp(suffix=".mp3")
silent_audio.export(fallback_path, format="mp3")
return fallback_path
await asyncio.sleep(0.5) # brief wait before retry
return None
async def process_transcript_line(line, default_voice, rate, pitch):
"""Processes a single transcript line with HH:MM:SS.milliseconds timestamp and quoted text segments."""
match = re.match(r'(\d{2}):(\d{2}):(\d{2}),(\d{3})\s+(.*)', line) # Modified timestamp regex
if match:
count = 0
hours, minutes, seconds, milliseconds, text_parts = match.groups()
start_time_ms = (
int(hours) * 3600000 +
int(minutes) * 60000 +
int(seconds) * 1000 +
int(milliseconds)
)
audio_segments = []
split_parts = re.split(r'(")', text_parts) # Split by quote marks, keeping the quotes
# Initialize a variable to track if it's the first iteration
global check1 # Use the global variable
check1 = False
process_next = False
for part in split_parts:
if part == '"': #process text that are inside quote
process_next = not process_next
check1 = False # set it to False
continue
if process_next and part.strip():
audio_path = await generate_audio_with_voice_prefix(part, default_voice, rate, pitch)
if audio_path:
audio_segments.append(audio_path)
elif not process_next and part.strip():
if part == split_parts[-1]: # check if this is laster iteration,
check1 = True # set it to True
audio_path = await generate_audio_with_voice_prefix(part, default_voice, rate, pitch) # Process unquoted text with default voice
if audio_path:
audio_segments.append(audio_path)
return start_time_ms, audio_segments
return None, None
async def transcript_to_speech(transcript_text, voice, rate, pitch):
if not transcript_text.strip():
return None, gr.Warning("Please enter transcript text.")
if not voice:
return None, gr.Warning("Please select a voice.")
lines = transcript_text.strip().split('\n')
timed_audio_segments = []
max_end_time_ms = 0
previous_end_time_ms = 0
i = 0
while i < len(lines):
start_time, audio_paths = await process_transcript_line(lines[i], voice, rate, pitch)
if start_time is not None and audio_paths:
combined_line_audio = AudioSegment.empty()
for path in audio_paths:
try:
audio = AudioSegment.from_mp3(path)
#audio = strip_silence(audio, silence_thresh=-40, min_silence_len=100)
combined_line_audio += audio
#combined_line_audio = strip_silence(combined_line_audio, silence_thresh=-40, min_silence_len=100)
os.remove(path)
except FileNotFoundError:
print(f"Warning: Audio file not found: {path}")
current_audio_duration = len(combined_line_audio)
intended_start_time = start_time
# Check duration until the next timestamp
if i + 1 < len(lines):
next_start_time_line = lines[i+1]
next_start_time_match = re.match(r'(\d{2}):(\d{2}):(\d{2}),(\d{3})\s+.*', next_start_time_line)
if next_start_time_match:
next_h, next_m, next_s, next_ms = next_start_time_match.groups()
next_start_time_ms = (int(next_h) * 3600000 + int(next_m) * 60000 + int(next_s) * 1000 + int(next_ms))
duration_to_next = next_start_time_ms - start_time
else:
duration_to_next = float('inf') # Or some other large value
if current_audio_duration > duration_to_next:
# Hold and append audio from subsequent lines
j = i + 1
while j < len(lines):
next_start_time, next_audio_paths = await process_transcript_line(lines[j], voice, rate, pitch)
if next_start_time is not None and next_audio_paths:
for next_path in next_audio_paths:
try:
next_audio = AudioSegment.from_mp3(next_path)
combined_line_audio += next_audio
os.remove(next_path)
except FileNotFoundError:
print(f"Warning: Audio file not found: {next_path}")
current_audio_duration = len(combined_line_audio)
#check duration to the next timestamp.
if j + 1 < len(lines):
next_start_time_line_2 = lines[j+1]
next_start_time_match_2 = re.match(r'(\d{2}):(\d{2}):(\d{2}),(\d{3})\s+.*', next_start_time_line_2)
if next_start_time_match_2:
next_h_2, next_m_2, next_s_2, next_ms_2 = next_start_time_match_2.groups()
next_start_time_ms_2 = (int(next_h_2) * 3600000 + int(next_m_2) * 60000 + int(next_s_2) * 1000 + int(next_ms_2))
duration_to_next_2 = next_start_time_ms_2 - start_time
if current_audio_duration <= duration_to_next_2:
break
else:
break
j += 1
else:
break
i = j #update i to j
timed_audio_segments.append({'start': intended_start_time, 'audio': combined_line_audio})
previous_end_time_ms = max(previous_end_time_ms, intended_start_time + current_audio_duration)
max_end_time_ms = max(max_end_time_ms, previous_end_time_ms)
elif audio_paths:
for path in audio_paths:
try:
os.remove(path)
except FileNotFoundError:
pass # Clean up even if no timestamp
i += 1
if not timed_audio_segments:
return None, "No processable audio segments found."
print(f"Combining Audio - final stage.")
final_audio = AudioSegment.silent(duration=max_end_time_ms, frame_rate=24000)
for segment in timed_audio_segments:
final_audio = final_audio.overlay(segment['audio'], position=segment['start'])
combined_audio_path = tempfile.mktemp(suffix=".mp3")
final_audio.export(combined_audio_path, format="mp3")
global default_voice_short # Use the global variable
default_voice_short=""
print(f"Job done! reset voice back to default.")
return combined_audio_path, None
@spaces.GPU
def tts_interface(transcript, voice, rate, pitch):
audio, warning = asyncio.run(transcript_to_speech(transcript, voice, rate, pitch))
return audio, warning
async def create_demo():
voices = await get_voices()
default_voice = "en-US-AndrewMultilingualNeural - en-US (Male)"
description = """
Process timestamped text (HH:MM:SS,milliseconds) with voice changes within quotes.
Format: `HH:MM:SS,milliseconds "VoicePrefix Text" more text "1F Different Voice"
Example:
```
00:00:00,000 "This is the default voice." more default. "1F Now a female voice." and back to default.
00:00:05,000 "1C Yes," said the child, "it is fun!"
```
***************************************************************************************************
<b> 1F : en-GB-SoniaNeural
2F : en-US-JennyNeural
3F : en-HK-YanNeural
4F : en-US-EmmaNeural
1M : en-AU-WilliamNeural
2M : en-GB-RyanNeural
3M : en-US-BrianMultilingualNeural
4M : en-GB-ThomasNeural
1O : en-GB-RyanNeural"
1C : en-GB-MaisieNeural
1V : vi-VN-HoaiMyNeural
2V : vi-VN-NamMinhNeural
3V : en-US-EmmaMultilingualNeural
4V : en-US-BrianMultilingualNeural
5V : en-US-AvaMultilingualNeural
6V : en-US-AndrewMultilingualNeural
7V : de-DE-SeraphinaMultilingualNeural
8V : ko-KR-HyunsuMultilingualNeural </b>
****************************************************************************************************
"""
demo = gr.Interface(
fn=tts_interface,
inputs=[
gr.Textbox(label="Timestamped Text with Voice Changes", lines=10, placeholder='00:00:00,000 "Text" more text "1F Different Voice"'),
gr.Dropdown(choices=[""] + list(voices.keys()), label="Select Default Voice", value=default_voice),
gr.Slider(minimum=-50, maximum=50, value=0, label="Speech Rate Adjustment (%)", step=1),
gr.Slider(minimum=-50, maximum=50, value=0, label="Pitch Adjustment (Hz)", step=1) # Removed the duplicate value argument
],
outputs=[
gr.Audio(label="Generated Audio", type="filepath"),
gr.Markdown(label="Warning", visible=False)
],
title="TTS with HH:MM:SS,milliseconds and In-Quote Voice Switching",
description=description,
analytics_enabled=False,
allow_flagging=False
)
return demo
if __name__ == "__main__":
demo = asyncio.run(create_demo())
demo.launch()