Update app.py
Browse filesAdd error handling - skip if text is not valid
app.py
CHANGED
@@ -17,11 +17,9 @@ def get_silence(duration_ms=1000):
|
|
17 |
duration=duration_ms,
|
18 |
frame_rate=24000 # 24kHz sampling rate
|
19 |
)
|
20 |
-
|
21 |
# Set audio parameters
|
22 |
silent_audio = silent_audio.set_channels(1) # Mono
|
23 |
silent_audio = silent_audio.set_sample_width(4) # 32-bit (4 bytes per sample)
|
24 |
-
|
25 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
|
26 |
# Export with specific bitrate and codec parameters
|
27 |
silent_audio.export(
|
@@ -39,8 +37,12 @@ def get_silence(duration_ms=1000):
|
|
39 |
|
40 |
# Get all available voices
|
41 |
async def get_voices():
|
42 |
-
|
43 |
-
|
|
|
|
|
|
|
|
|
44 |
|
45 |
async def generate_audio_with_voice_prefix(text_segment, default_voice, rate, pitch, target_duration_ms=None, speed_adjustment_factor=1.0):
|
46 |
"""Generates audio for a text segment, handling voice prefixes and adjusting rate for duration."""
|
@@ -78,7 +80,6 @@ async def generate_audio_with_voice_prefix(text_segment, default_voice, rate, pi
|
|
78 |
detect = 1
|
79 |
processed_text = processed_text[len(prefix):].strip()
|
80 |
break
|
81 |
-
|
82 |
match = re.search(r'([A-Za-z]+)-?(\d+)', processed_text)
|
83 |
if match:
|
84 |
prefix_pitch = match.group(1)
|
@@ -88,36 +89,35 @@ async def generate_audio_with_voice_prefix(text_segment, default_voice, rate, pi
|
|
88 |
processed_text = re.sub(r'[A-Za-z]+-?\d+', '', processed_text, count=1).strip()
|
89 |
elif detect:
|
90 |
processed_text = processed_text.lstrip('-0123456789').strip() # Remove potential leftover numbers
|
91 |
-
|
92 |
elif detect:
|
93 |
processed_text = processed_text[2:].strip()
|
94 |
-
|
95 |
if processed_text:
|
96 |
rate_str = f"{current_rate:+d}%"
|
97 |
pitch_str = f"{current_pitch:+d}Hz"
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
|
|
121 |
return None
|
122 |
|
123 |
async def process_transcript_line(line, default_voice, rate, pitch, speed_adjustment_factor):
|
@@ -153,7 +153,6 @@ async def process_transcript_line(line, default_voice, rate, pitch, speed_adjust
|
|
153 |
audio_path = await generate_audio_with_voice_prefix(part, default_voice, rate, pitch, duration_ms, speed_adjustment_factor)
|
154 |
if audio_path:
|
155 |
audio_segments.append(audio_path)
|
156 |
-
|
157 |
return start_time_ms, audio_segments, duration_ms
|
158 |
return None, None, None
|
159 |
|
@@ -162,43 +161,38 @@ async def transcript_to_speech(transcript_text, voice, rate, pitch, speed_adjust
|
|
162 |
return None, gr.Warning("Please enter transcript text.")
|
163 |
if not voice:
|
164 |
return None, gr.Warning("Please select a voice.")
|
165 |
-
|
166 |
lines = transcript_text.strip().split('\n')
|
167 |
timed_audio_segments = []
|
168 |
max_end_time_ms = 0
|
169 |
-
|
170 |
for line in lines:
|
171 |
start_time, audio_paths, duration = await process_transcript_line(line, voice, rate, pitch, speed_adjustment_factor)
|
172 |
if start_time is not None and audio_paths:
|
173 |
combined_line_audio = AudioSegment.empty()
|
174 |
current_time_ms = start_time
|
175 |
segment_duration = duration / len(audio_paths) if audio_paths else 0
|
176 |
-
|
177 |
for path in audio_paths:
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
if combined_line_audio:
|
186 |
timed_audio_segments.append({'start': start_time, 'audio': combined_line_audio})
|
187 |
max_end_time_ms = max(max_end_time_ms, start_time + len(combined_line_audio))
|
188 |
elif audio_paths:
|
189 |
for path in audio_paths:
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
if not timed_audio_segments:
|
196 |
return None, "No processable audio segments found."
|
197 |
-
|
198 |
final_audio = AudioSegment.silent(duration=max_end_time_ms, frame_rate=24000)
|
199 |
for segment in timed_audio_segments:
|
200 |
final_audio = final_audio.overlay(segment['audio'], position=segment['start'])
|
201 |
-
|
202 |
combined_audio_path = tempfile.mktemp(suffix=".mp3")
|
203 |
final_audio.export(combined_audio_path, format="mp3")
|
204 |
return combined_audio_path, None
|
|
|
17 |
duration=duration_ms,
|
18 |
frame_rate=24000 # 24kHz sampling rate
|
19 |
)
|
|
|
20 |
# Set audio parameters
|
21 |
silent_audio = silent_audio.set_channels(1) # Mono
|
22 |
silent_audio = silent_audio.set_sample_width(4) # 32-bit (4 bytes per sample)
|
|
|
23 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
|
24 |
# Export with specific bitrate and codec parameters
|
25 |
silent_audio.export(
|
|
|
37 |
|
38 |
# Get all available voices
|
39 |
async def get_voices():
|
40 |
+
try:
|
41 |
+
voices = await edge_tts.list_voices()
|
42 |
+
return {f"{v['ShortName']} - {v['Locale']} ({v['Gender']})": v['ShortName'] for v in voices}
|
43 |
+
except Exception as e:
|
44 |
+
print(f"Error listing voices: {e}")
|
45 |
+
return {}
|
46 |
|
47 |
async def generate_audio_with_voice_prefix(text_segment, default_voice, rate, pitch, target_duration_ms=None, speed_adjustment_factor=1.0):
|
48 |
"""Generates audio for a text segment, handling voice prefixes and adjusting rate for duration."""
|
|
|
80 |
detect = 1
|
81 |
processed_text = processed_text[len(prefix):].strip()
|
82 |
break
|
|
|
83 |
match = re.search(r'([A-Za-z]+)-?(\d+)', processed_text)
|
84 |
if match:
|
85 |
prefix_pitch = match.group(1)
|
|
|
89 |
processed_text = re.sub(r'[A-Za-z]+-?\d+', '', processed_text, count=1).strip()
|
90 |
elif detect:
|
91 |
processed_text = processed_text.lstrip('-0123456789').strip() # Remove potential leftover numbers
|
|
|
92 |
elif detect:
|
93 |
processed_text = processed_text[2:].strip()
|
|
|
94 |
if processed_text:
|
95 |
rate_str = f"{current_rate:+d}%"
|
96 |
pitch_str = f"{current_pitch:+d}Hz"
|
97 |
+
try:
|
98 |
+
communicate = edge_tts.Communicate(processed_text, current_voice_short, rate=rate_str, pitch=pitch_str)
|
99 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
|
100 |
+
audio_path = tmp_file.name
|
101 |
+
await communicate.save(audio_path)
|
102 |
+
if target_duration_ms is not None and os.path.exists(audio_path):
|
103 |
+
audio = AudioSegment.from_mp3(audio_path)
|
104 |
+
audio_duration_ms = len(audio)
|
105 |
+
#print(f"Generated audio duration: {audio_duration_ms}ms, Target duration: {target_duration_ms}ms") # Debug
|
106 |
+
if audio_duration_ms > target_duration_ms and target_duration_ms > 0:
|
107 |
+
speed_factor = (audio_duration_ms / target_duration_ms) * speed_adjustment_factor
|
108 |
+
#print(f"Speed factor (after user adjustment): {speed_factor}") # Debug
|
109 |
+
if speed_factor > 0:
|
110 |
+
if speed_factor < 1.0:
|
111 |
+
speed_factor = 1.0
|
112 |
+
y, sr = librosa.load(audio_path, sr=None)
|
113 |
+
y_stretched = librosa.effects.time_stretch(y, rate=speed_factor)
|
114 |
+
sf.write(audio_path, y_stretched, sr)
|
115 |
+
else:
|
116 |
+
print("Generated audio is not longer than target duration, no speed adjustment.") # Debug
|
117 |
+
return audio_path
|
118 |
+
except Exception as e:
|
119 |
+
print(f"Edge TTS error processing '{processed_text}': {e}")
|
120 |
+
return None
|
121 |
return None
|
122 |
|
123 |
async def process_transcript_line(line, default_voice, rate, pitch, speed_adjustment_factor):
|
|
|
153 |
audio_path = await generate_audio_with_voice_prefix(part, default_voice, rate, pitch, duration_ms, speed_adjustment_factor)
|
154 |
if audio_path:
|
155 |
audio_segments.append(audio_path)
|
|
|
156 |
return start_time_ms, audio_segments, duration_ms
|
157 |
return None, None, None
|
158 |
|
|
|
161 |
return None, gr.Warning("Please enter transcript text.")
|
162 |
if not voice:
|
163 |
return None, gr.Warning("Please select a voice.")
|
|
|
164 |
lines = transcript_text.strip().split('\n')
|
165 |
timed_audio_segments = []
|
166 |
max_end_time_ms = 0
|
|
|
167 |
for line in lines:
|
168 |
start_time, audio_paths, duration = await process_transcript_line(line, voice, rate, pitch, speed_adjustment_factor)
|
169 |
if start_time is not None and audio_paths:
|
170 |
combined_line_audio = AudioSegment.empty()
|
171 |
current_time_ms = start_time
|
172 |
segment_duration = duration / len(audio_paths) if audio_paths else 0
|
|
|
173 |
for path in audio_paths:
|
174 |
+
if path: # Only process if audio_path is not None (meaning TTS was successful)
|
175 |
+
try:
|
176 |
+
audio = AudioSegment.from_mp3(path)
|
177 |
+
combined_line_audio += audio
|
178 |
+
os.remove(path)
|
179 |
+
except FileNotFoundError:
|
180 |
+
print(f"Warning: Audio file not found: {path}")
|
181 |
if combined_line_audio:
|
182 |
timed_audio_segments.append({'start': start_time, 'audio': combined_line_audio})
|
183 |
max_end_time_ms = max(max_end_time_ms, start_time + len(combined_line_audio))
|
184 |
elif audio_paths:
|
185 |
for path in audio_paths:
|
186 |
+
if path:
|
187 |
+
try:
|
188 |
+
os.remove(path)
|
189 |
+
except FileNotFoundError:
|
190 |
+
pass # Clean up even if no timestamp
|
191 |
if not timed_audio_segments:
|
192 |
return None, "No processable audio segments found."
|
|
|
193 |
final_audio = AudioSegment.silent(duration=max_end_time_ms, frame_rate=24000)
|
194 |
for segment in timed_audio_segments:
|
195 |
final_audio = final_audio.overlay(segment['audio'], position=segment['start'])
|
|
|
196 |
combined_audio_path = tempfile.mktemp(suffix=".mp3")
|
197 |
final_audio.export(combined_audio_path, format="mp3")
|
198 |
return combined_audio_path, None
|