Spaces:
Sleeping
Sleeping
Update app.py
Browse filesChange to work with srt style text: (00:02:18,541 - 00:02:21,458 Hãy cùng nhau lấy chúng, lấy chúng! )
app.py
CHANGED
@@ -7,6 +7,8 @@ import os
|
|
7 |
import re
|
8 |
from pathlib import Path
|
9 |
from pydub import AudioSegment
|
|
|
|
|
10 |
|
11 |
def get_silence(duration_ms=1000):
|
12 |
# Create silent audio segment with specified parameters
|
@@ -39,118 +41,55 @@ async def get_voices():
|
|
39 |
voices = await edge_tts.list_voices()
|
40 |
return {f"{v['ShortName']} - {v['Locale']} ({v['Gender']})": v['ShortName'] for v in voices}
|
41 |
|
42 |
-
async def generate_audio_with_voice_prefix(text_segment, default_voice, rate, pitch):
|
43 |
-
"""Generates audio for a text segment, handling voice prefixes."""
|
44 |
current_voice_full = default_voice
|
45 |
current_voice_short = current_voice_full.split(" - ")[0] if current_voice_full else ""
|
46 |
current_rate = rate
|
47 |
current_pitch = pitch
|
48 |
processed_text = text_segment.strip()
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
current_voice_short = voice1F_short
|
80 |
-
current_pitch = 25
|
81 |
-
detect=1
|
82 |
-
#processed_text = processed_text[2:].strip()
|
83 |
-
elif processed_text.startswith("2F"):
|
84 |
-
current_voice_short = voice2F_short
|
85 |
-
#processed_text = processed_text[2:].strip()
|
86 |
-
detect=1
|
87 |
-
elif processed_text.startswith("3F"):
|
88 |
-
current_voice_short = voice3F_short
|
89 |
-
#processed_text = processed_text[2:].strip()
|
90 |
-
detect=1
|
91 |
-
elif processed_text.startswith("4F"):
|
92 |
-
current_voice_short = voice4F_short
|
93 |
-
#processed_text = processed_text[2:].strip()
|
94 |
-
detect=1
|
95 |
-
elif processed_text.startswith("1M"):
|
96 |
-
current_voice_short = voice1_short
|
97 |
-
#processed_text = processed_text[2:].strip()
|
98 |
-
detect=1
|
99 |
-
elif processed_text.startswith("2M"):
|
100 |
-
current_voice_short = voice2_short
|
101 |
-
#processed_text = processed_text[2:].strip()
|
102 |
-
detect=1
|
103 |
-
elif processed_text.startswith("3M"):
|
104 |
-
current_voice_short = voice3_short
|
105 |
-
#processed_text = processed_text[2:].strip()
|
106 |
-
detect=1
|
107 |
-
elif processed_text.startswith("4M"):
|
108 |
-
current_voice_short = voice4_short
|
109 |
-
#processed_text = processed_text[2:].strip()
|
110 |
-
detect=1
|
111 |
-
elif processed_text.startswith("1O"): # Old man voice
|
112 |
-
current_voice_short = voice5_short
|
113 |
-
current_pitch = -20
|
114 |
-
current_rate = -10
|
115 |
-
#processed_text = processed_text[2:].strip()
|
116 |
-
detect=1
|
117 |
-
elif processed_text.startswith("1C"): #Child voice
|
118 |
-
current_voice_short = voice6_short
|
119 |
-
#processed_text = processed_text[2:].strip()
|
120 |
-
detect=1
|
121 |
-
elif processed_text.startswith("1V"): #Female VN
|
122 |
-
current_voice_short = voice7_short
|
123 |
-
#processed_text = processed_text[2:].strip()
|
124 |
-
detect=1
|
125 |
-
elif processed_text.startswith("2V"):
|
126 |
-
current_voice_short = voice8_short
|
127 |
-
#processed_text = processed_text[2:].strip()
|
128 |
-
detect=1
|
129 |
-
elif processed_text.startswith("3V"): #Female VN
|
130 |
-
current_voice_short = voice9F_short
|
131 |
-
current_pitch = 25
|
132 |
-
#processed_text = processed_text[2:].strip()
|
133 |
-
detect=1
|
134 |
-
elif processed_text.startswith("4V"):
|
135 |
-
current_voice_short = voice9_short
|
136 |
-
current_pitch = -20
|
137 |
-
#processed_text = processed_text[2:].strip()
|
138 |
-
detect=1
|
139 |
-
#Looking for number following prefix, which are pitch values.
|
140 |
-
#match = re.search(r'[A-Za-z]\d+', part) # Look for a letter followed by one or more digits
|
141 |
-
match = re.search(r'[A-Za-z]+\-?\d+', processed_text) # Look for a letter(s) followed by an optional '-' and digits
|
142 |
if match:
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
if processed_text:
|
155 |
rate_str = f"{current_rate:+d}%"
|
156 |
pitch_str = f"{current_pitch:+d}Hz"
|
@@ -158,40 +97,56 @@ async def generate_audio_with_voice_prefix(text_segment, default_voice, rate, pi
|
|
158 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
|
159 |
audio_path = tmp_file.name
|
160 |
await communicate.save(audio_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
return audio_path
|
162 |
return None
|
163 |
|
164 |
async def process_transcript_line(line, default_voice, rate, pitch):
|
165 |
-
"""Processes a single transcript line with HH:MM:SS
|
166 |
-
match = re.match(r'(\d{2}):(\d{2}):(\d{2})
|
167 |
if match:
|
168 |
-
|
169 |
start_time_ms = (
|
170 |
-
int(
|
171 |
-
int(
|
172 |
-
int(
|
173 |
-
int(
|
174 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
175 |
audio_segments = []
|
176 |
-
|
177 |
-
split_parts = re.split(r'[“”"]', text_parts) # Split by quote marks, keeping the quotes
|
178 |
-
#paragraphs = [p.strip() for p in re.split(r'[“”"]', text) if p.strip()]
|
179 |
process_next = False
|
180 |
for part in split_parts:
|
181 |
if part == '"':
|
182 |
process_next = not process_next
|
183 |
continue
|
184 |
if process_next and part.strip():
|
185 |
-
audio_path = await generate_audio_with_voice_prefix(part, default_voice, rate, pitch)
|
186 |
if audio_path:
|
187 |
audio_segments.append(audio_path)
|
188 |
elif not process_next and part.strip():
|
189 |
-
audio_path = await generate_audio_with_voice_prefix(part, default_voice, rate, pitch)
|
190 |
if audio_path:
|
191 |
audio_segments.append(audio_path)
|
192 |
|
193 |
-
return start_time_ms, audio_segments
|
194 |
-
return None, None
|
195 |
|
196 |
async def transcript_to_speech(transcript_text, voice, rate, pitch):
|
197 |
if not transcript_text.strip():
|
@@ -204,12 +159,16 @@ async def transcript_to_speech(transcript_text, voice, rate, pitch):
|
|
204 |
max_end_time_ms = 0
|
205 |
|
206 |
for line in lines:
|
207 |
-
start_time, audio_paths = await process_transcript_line(line, voice, rate, pitch)
|
208 |
if start_time is not None and audio_paths:
|
209 |
combined_line_audio = AudioSegment.empty()
|
|
|
|
|
|
|
210 |
for path in audio_paths:
|
211 |
try:
|
212 |
audio = AudioSegment.from_mp3(path)
|
|
|
213 |
combined_line_audio += audio
|
214 |
os.remove(path)
|
215 |
except FileNotFoundError:
|
@@ -245,12 +204,13 @@ async def create_demo():
|
|
245 |
voices = await get_voices()
|
246 |
default_voice = "en-US-AndrewMultilingualNeural - en-US (Male)"
|
247 |
description = """
|
248 |
-
Process timestamped text (HH:MM:SS
|
249 |
-
|
|
|
250 |
Example:
|
251 |
```
|
252 |
-
00:00:00
|
253 |
-
00:00:10
|
254 |
```
|
255 |
***************************************************************************************************
|
256 |
1M = en-AU-WilliamNeural - en-AU (Male)
|
@@ -272,7 +232,7 @@ async def create_demo():
|
|
272 |
demo = gr.Interface(
|
273 |
fn=tts_interface,
|
274 |
inputs=[
|
275 |
-
gr.Textbox(label="Timestamped Text with Voice Changes", lines=10, placeholder='00:00:00
|
276 |
gr.Dropdown(choices=[""] + list(voices.keys()), label="Select Default Voice", value=default_voice),
|
277 |
gr.Slider(minimum=-50, maximum=50, value=0, label="Speech Rate Adjustment (%)", step=1),
|
278 |
gr.Slider(minimum=-50, maximum=50, value=0, label="Pitch Adjustment (Hz)", step=1)
|
@@ -281,7 +241,7 @@ async def create_demo():
|
|
281 |
gr.Audio(label="Generated Audio", type="filepath"),
|
282 |
gr.Markdown(label="Warning", visible=False)
|
283 |
],
|
284 |
-
title="TTS with
|
285 |
description=description,
|
286 |
analytics_enabled=False,
|
287 |
allow_flagging=False
|
@@ -289,5 +249,6 @@ async def create_demo():
|
|
289 |
return demo
|
290 |
|
291 |
if __name__ == "__main__":
|
|
|
292 |
demo = asyncio.run(create_demo())
|
293 |
demo.launch()
|
|
|
7 |
import re
|
8 |
from pathlib import Path
|
9 |
from pydub import AudioSegment
|
10 |
+
import librosa
|
11 |
+
import numpy as np
|
12 |
|
13 |
def get_silence(duration_ms=1000):
|
14 |
# Create silent audio segment with specified parameters
|
|
|
41 |
voices = await edge_tts.list_voices()
|
42 |
return {f"{v['ShortName']} - {v['Locale']} ({v['Gender']})": v['ShortName'] for v in voices}
|
43 |
|
44 |
+
async def generate_audio_with_voice_prefix(text_segment, default_voice, rate, pitch, target_duration_ms=None):
|
45 |
+
"""Generates audio for a text segment, handling voice prefixes and adjusting rate for duration."""
|
46 |
current_voice_full = default_voice
|
47 |
current_voice_short = current_voice_full.split(" - ")[0] if current_voice_full else ""
|
48 |
current_rate = rate
|
49 |
current_pitch = pitch
|
50 |
processed_text = text_segment.strip()
|
51 |
+
voice_map = {
|
52 |
+
"1F": "en-GB-SoniaNeural",
|
53 |
+
"2M": "en-GB-RyanNeural",
|
54 |
+
"3M": "en-US-BrianMultilingualNeural",
|
55 |
+
"2F": "en-US-JennyNeural",
|
56 |
+
"1M": "en-AU-WilliamNeural",
|
57 |
+
"3F": "en-HK-YanNeural",
|
58 |
+
"4M": "en-GB-ThomasNeural",
|
59 |
+
"4F": "en-US-EmmaNeural",
|
60 |
+
"1O": "en-GB-RyanNeural", # Old Man
|
61 |
+
"1C": "en-GB-MaisieNeural", # Child
|
62 |
+
"1V": "vi-VN-HoaiMyNeural", # Vietnamese (Female)
|
63 |
+
"2V": "vi-VN-NamMinhNeural", # Vietnamese (Male)
|
64 |
+
"3V": "vi-VN-HoaiMyNeural", # Vietnamese (Female)
|
65 |
+
"4V": "vi-VN-NamMinhNeural", # Vietnamese (Male)
|
66 |
+
}
|
67 |
+
detect = 0
|
68 |
+
for prefix, voice_short in voice_map.items():
|
69 |
+
if processed_text.startswith(prefix):
|
70 |
+
current_voice_short = voice_short
|
71 |
+
if prefix in ["1F", "3F", "1V", "3V"]:
|
72 |
+
current_pitch = 25
|
73 |
+
elif prefix in ["1O", "4V"]:
|
74 |
+
current_pitch = -20
|
75 |
+
current_rate = -10
|
76 |
+
detect = 1
|
77 |
+
processed_text = processed_text[len(prefix):].strip()
|
78 |
+
break
|
79 |
+
|
80 |
+
match = re.search(r'([A-Za-z]+)-?(\d+)', processed_text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
if match:
|
82 |
+
prefix_pitch = match.group(1)
|
83 |
+
number = int(match.group(2))
|
84 |
+
if prefix_pitch in voice_map:
|
85 |
+
current_pitch += number
|
86 |
+
processed_text = re.sub(r'[A-Za-z]+-?\d+', '', processed_text, count=1).strip()
|
87 |
+
elif detect:
|
88 |
+
processed_text = processed_text.lstrip('-0123456789').strip() # Remove potential leftover numbers
|
89 |
+
|
90 |
+
elif detect:
|
91 |
+
processed_text = processed_text[2:].strip()
|
92 |
+
|
93 |
if processed_text:
|
94 |
rate_str = f"{current_rate:+d}%"
|
95 |
pitch_str = f"{current_pitch:+d}Hz"
|
|
|
97 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
|
98 |
audio_path = tmp_file.name
|
99 |
await communicate.save(audio_path)
|
100 |
+
|
101 |
+
if target_duration_ms is not None and os.path.exists(audio_path):
|
102 |
+
audio = AudioSegment.from_mp3(audio_path)
|
103 |
+
audio_duration_ms = len(audio)
|
104 |
+
if audio_duration_ms > 0 and target_duration_ms > 0:
|
105 |
+
speed_factor = audio_duration_ms / target_duration_ms
|
106 |
+
if speed_factor > 0:
|
107 |
+
# Use librosa for time stretching with better quality for speech
|
108 |
+
y, sr = librosa.load(audio_path, sr=None)
|
109 |
+
y_stretched = librosa.effects.time_stretch(y, rate=speed_factor)
|
110 |
+
sf.write(audio_path, y_stretched, sr)
|
111 |
return audio_path
|
112 |
return None
|
113 |
|
114 |
async def process_transcript_line(line, default_voice, rate, pitch):
|
115 |
+
"""Processes a single transcript line with HH:MM:SS,milliseconds - HH:MM:SS,milliseconds timestamp."""
|
116 |
+
match = re.match(r'(\d{2}):(\d{2}):(\d{2}),(\d{3})\s+-\s+(\d{2}):(\d{2}):(\d{2}),(\d{3})\s+(.*)', line)
|
117 |
if match:
|
118 |
+
start_h, start_m, start_s, start_ms, end_h, end_m, end_s, end_ms, text_parts = match.groups()
|
119 |
start_time_ms = (
|
120 |
+
int(start_h) * 3600000 +
|
121 |
+
int(start_m) * 60000 +
|
122 |
+
int(start_s) * 1000 +
|
123 |
+
int(start_ms)
|
124 |
)
|
125 |
+
end_time_ms = (
|
126 |
+
int(end_h) * 3600000 +
|
127 |
+
int(end_m) * 60000 +
|
128 |
+
int(end_s) * 1000 +
|
129 |
+
int(end_ms)
|
130 |
+
)
|
131 |
+
duration_ms = end_time_ms - start_time_ms
|
132 |
audio_segments = []
|
133 |
+
split_parts = re.split(r'[“”"]', text_parts)
|
|
|
|
|
134 |
process_next = False
|
135 |
for part in split_parts:
|
136 |
if part == '"':
|
137 |
process_next = not process_next
|
138 |
continue
|
139 |
if process_next and part.strip():
|
140 |
+
audio_path = await generate_audio_with_voice_prefix(part, default_voice, rate, pitch, duration_ms)
|
141 |
if audio_path:
|
142 |
audio_segments.append(audio_path)
|
143 |
elif not process_next and part.strip():
|
144 |
+
audio_path = await generate_audio_with_voice_prefix(part, default_voice, rate, pitch, duration_ms)
|
145 |
if audio_path:
|
146 |
audio_segments.append(audio_path)
|
147 |
|
148 |
+
return start_time_ms, audio_segments, duration_ms
|
149 |
+
return None, None, None
|
150 |
|
151 |
async def transcript_to_speech(transcript_text, voice, rate, pitch):
|
152 |
if not transcript_text.strip():
|
|
|
159 |
max_end_time_ms = 0
|
160 |
|
161 |
for line in lines:
|
162 |
+
start_time, audio_paths, duration = await process_transcript_line(line, voice, rate, pitch)
|
163 |
if start_time is not None and audio_paths:
|
164 |
combined_line_audio = AudioSegment.empty()
|
165 |
+
current_time_ms = start_time
|
166 |
+
segment_duration = duration / len(audio_paths) if audio_paths else 0
|
167 |
+
|
168 |
for path in audio_paths:
|
169 |
try:
|
170 |
audio = AudioSegment.from_mp3(path)
|
171 |
+
# No need to adjust speed here, it's done in generate_audio_with_voice_prefix
|
172 |
combined_line_audio += audio
|
173 |
os.remove(path)
|
174 |
except FileNotFoundError:
|
|
|
204 |
voices = await get_voices()
|
205 |
default_voice = "en-US-AndrewMultilingualNeural - en-US (Male)"
|
206 |
description = """
|
207 |
+
Process timestamped text (HH:MM:SS,milliseconds - HH:MM:SS,milliseconds) with voice changes within quotes.
|
208 |
+
The duration specified in the timestamp will be used to adjust the speech rate so the generated audio fits within that time.
|
209 |
+
Format: `HH:MM:SS,milliseconds - HH:MM:SS,milliseconds "VoicePrefix Text" more text "AnotherVoicePrefix More Text"`
|
210 |
Example:
|
211 |
```
|
212 |
+
00:00:00,000 - 00:00:05,000 "This is the default voice." more default. "1F Now a female voice." and back to default.
|
213 |
+
00:00:05,500 - 00:00:10,250 "1C Yes," said the child, "it is fun!"
|
214 |
```
|
215 |
***************************************************************************************************
|
216 |
1M = en-AU-WilliamNeural - en-AU (Male)
|
|
|
232 |
demo = gr.Interface(
|
233 |
fn=tts_interface,
|
234 |
inputs=[
|
235 |
+
gr.Textbox(label="Timestamped Text with Voice Changes and Duration", lines=10, placeholder='00:00:00,000 - 00:00:05,000 "Text" more text "1F Different Voice"'),
|
236 |
gr.Dropdown(choices=[""] + list(voices.keys()), label="Select Default Voice", value=default_voice),
|
237 |
gr.Slider(minimum=-50, maximum=50, value=0, label="Speech Rate Adjustment (%)", step=1),
|
238 |
gr.Slider(minimum=-50, maximum=50, value=0, label="Pitch Adjustment (Hz)", step=1)
|
|
|
241 |
gr.Audio(label="Generated Audio", type="filepath"),
|
242 |
gr.Markdown(label="Warning", visible=False)
|
243 |
],
|
244 |
+
title="TTS with Duration-Aware Speed Adjustment and In-Quote Voice Switching",
|
245 |
description=description,
|
246 |
analytics_enabled=False,
|
247 |
allow_flagging=False
|
|
|
249 |
return demo
|
250 |
|
251 |
if __name__ == "__main__":
|
252 |
+
import soundfile as sf # Import soundfile here
|
253 |
demo = asyncio.run(create_demo())
|
254 |
demo.launch()
|