Revert to previous code
Browse files
app.py
CHANGED
@@ -1,133 +1,150 @@
|
|
1 |
-
import spaces
|
2 |
-
import gradio as gr
|
3 |
-
import edge_tts
|
4 |
-
import asyncio
|
5 |
-
import tempfile
|
6 |
-
import os
|
7 |
-
import re
|
8 |
-
from pathlib import Path
|
9 |
-
from pydub import AudioSegment
|
10 |
-
import librosa
|
11 |
import soundfile as sf
|
12 |
import numpy as np
|
13 |
|
14 |
-
# Global constant for voice mapping
|
15 |
-
VOICE_MAP = {
|
16 |
-
"1F": "en-GB-SoniaNeural",
|
17 |
-
"2M": "en-GB-RyanNeural",
|
18 |
-
"3M": "en-US-BrianMultilingualNeural",
|
19 |
-
"2F": "en-US-JennyNeural",
|
20 |
-
"1M": "en-AU-WilliamNeural",
|
21 |
-
"3F": "en-HK-YanNeural",
|
22 |
-
"4M": "en-GB-ThomasNeural",
|
23 |
-
"4F": "en-US-EmmaNeural",
|
24 |
-
"1O": "en-GB-RyanNeural", # Old Man
|
25 |
-
"1C": "en-GB-MaisieNeural", # Child
|
26 |
-
"1V": "vi-VN-HoaiMyNeural", # Vietnamese (Female)
|
27 |
-
"2V": "vi-VN-NamMinhNeural", # Vietnamese (Male)
|
28 |
-
"3V": "vi-VN-HoaiMyNeural", # Vietnamese (Female)
|
29 |
-
"4V": "vi-VN-NamMinhNeural", # Vietnamese (Male)
|
30 |
-
}
|
31 |
-
|
32 |
def get_silence(duration_ms=1000):
|
33 |
-
|
34 |
-
|
35 |
duration=duration_ms,
|
36 |
-
frame_rate=24000
|
37 |
-
sample_width=4,
|
38 |
-
channels=1
|
39 |
)
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
async def get_voices():
|
42 |
-
|
43 |
try:
|
44 |
voices = await edge_tts.list_voices()
|
45 |
return {f"{v['ShortName']} - {v['Locale']} ({v['Gender']})": v['ShortName'] for v in voices}
|
46 |
-
except Exception as e:
|
47 |
-
print(f"Error listing voices: {e}")
|
48 |
-
return {}
|
49 |
|
50 |
async def generate_audio_with_voice_prefix(text_segment, default_voice, rate, pitch, target_duration_ms=None, speed_adjustment_factor=1.0):
|
51 |
"""Generates audio for a text segment, handling voice prefixes and adjusting rate for duration."""
|
52 |
-
|
53 |
-
current_voice_short =
|
54 |
current_rate = rate
|
55 |
current_pitch = pitch
|
56 |
-
|
57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
if processed_text.startswith(prefix):
|
59 |
current_voice_short = voice_short
|
60 |
if prefix in ["1F", "3F", "1V", "3V"]:
|
61 |
-
current_pitch = 25
|
62 |
elif prefix in ["1O", "4V"]:
|
63 |
current_pitch = -20
|
64 |
current_rate = -10
|
|
|
65 |
processed_text = processed_text[len(prefix):].strip()
|
66 |
break
|
67 |
|
68 |
match = re.search(r'([A-Za-z]+)-?(\d+)', processed_text)
|
69 |
-
if match
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
|
|
|
|
|
|
76 |
if processed_text:
|
77 |
rate_str = f"{current_rate:+d}%"
|
78 |
pitch_str = f"{current_pitch:+d}Hz"
|
79 |
-
try:
|
80 |
-
communicate = edge_tts.Communicate(processed_text, current_voice_short, rate=rate_str, pitch=pitch_str)
|
81 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
|
82 |
audio_path = tmp_file.name
|
83 |
await communicate.save(audio_path)
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
|
|
|
|
|
|
|
|
|
|
95 |
except Exception as e:
|
96 |
print(f"Edge TTS error processing '{processed_text}': {e}")
|
97 |
return None
|
98 |
return None
|
99 |
|
100 |
async def process_transcript_line(line, default_voice, rate, pitch, speed_adjustment_factor):
|
101 |
-
"""Processes a single transcript line with
|
102 |
-
match = re.match(r'(\d{2}
|
103 |
if match:
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
|
|
|
|
|
|
|
|
113 |
duration_ms = end_time_ms - start_time_ms
|
114 |
|
115 |
audio_segments = []
|
116 |
-
|
117 |
-
|
118 |
-
for part in
|
119 |
if part == '"':
|
120 |
-
|
121 |
continue
|
122 |
-
if part.strip():
|
123 |
-
audio_path = await generate_audio_with_voice_prefix(part, default_voice, rate, pitch, duration_ms, speed_adjustment_factor
|
|
|
|
|
|
|
|
|
124 |
if audio_path:
|
125 |
audio_segments.append(audio_path)
|
126 |
return start_time_ms, audio_segments, duration_ms
|
127 |
return None, None, None
|
128 |
|
129 |
async def transcript_to_speech(transcript_text, voice, rate, pitch, speed_adjustment_factor):
|
130 |
-
|
131 |
if not transcript_text.strip():
|
132 |
return None, gr.Warning("Please enter transcript text.")
|
133 |
if not voice:
|
@@ -136,103 +153,47 @@ async def transcript_to_speech(transcript_text, voice, rate, pitch, speed_adjust
|
|
136 |
lines = transcript_text.strip().split('\n')
|
137 |
timed_audio_segments = []
|
138 |
max_end_time_ms = 0
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
final_audio = AudioSegment.silent(duration=max_end_time_ms, frame_rate=24000)
|
172 |
-
for segment in timed_audio_segments:
|
173 |
-
final_audio = final_audio.overlay(segment['audio'], position=segment['start'])
|
174 |
-
|
175 |
-
combined_audio_path = Path(tmpdir) / "combined_audio.mp3"
|
176 |
-
final_audio.export(str(combined_audio_path), format="mp3")
|
177 |
-
return str(combined_audio_path), None
|
178 |
|
179 |
@spaces.GPU
|
180 |
def tts_interface(transcript, voice, rate, pitch, speed_adjustment_factor):
|
181 |
-
|
182 |
audio, warning = asyncio.run(transcript_to_speech(transcript, voice, rate, pitch, speed_adjustment_factor))
|
183 |
return audio, warning
|
184 |
|
185 |
async def create_demo():
|
186 |
-
|
187 |
voices = await get_voices()
|
188 |
default_voice = "en-US-AndrewMultilingualNeural - en-US (Male)"
|
189 |
-
description = """
|
190 |
-
Process timestamped text (HH:MM:SS,milliseconds - HH:MM:SS,milliseconds) with voice changes within quotes.
|
191 |
-
The duration specified in the timestamp will be used to adjust the speech rate so the generated audio fits within that time.
|
192 |
-
You can control the intensity of the speed adjustment using the "Speed Adjustment Factor" slider.
|
193 |
-
Format: `HH:MM:SS,milliseconds - HH:MM:SS,milliseconds "VoicePrefix Text" more text "AnotherVoicePrefix More Text"`
|
194 |
-
Example:
|
195 |
-
```
|
196 |
-
00:00:00,000 - 00:00:05,000 "This is the default voice." more default. "1F Now a female voice." and back to default.
|
197 |
-
00:00:05,500 - 00:00:10,250 "1C Yes," said the child, "it is fun!"
|
198 |
-
```
|
199 |
-
***************************************************************************************************
|
200 |
-
1M = en-AU-WilliamNeural - en-AU (Male)
|
201 |
-
1F = en-GB-SoniaNeural - en-GB (Female)
|
202 |
-
2M = en-GB-RyanNeural - en-GB (Male)
|
203 |
-
2F = en-US-JennyNeural - en-US (Female)
|
204 |
-
3M = en-US-BrianMultilingualNeural - en-US (Male)
|
205 |
-
3F = en-HK-YanNeural - en-HK (Female)
|
206 |
-
4M = en-GB-ThomasNeural - en-GB (Male)
|
207 |
-
4F = en-US-EmmaNeural - en-US (Female)
|
208 |
-
1O = en-GB-RyanNeural - en-GB (Male) # Old Man
|
209 |
-
1C = en-GB-MaisieNeural - en-GB (Female) # Child
|
210 |
-
1V = vi-VN-HoaiMyNeural - vi-VN (Female) # Vietnamese (Female)
|
211 |
-
2V = vi-VN-NamMinhNeural - vi-VN (Male) # Vietnamese (Male)
|
212 |
-
3V = vi-VN-HoaiMyNeural - vi-VN (Female) # Vietnamese (Female)
|
213 |
-
4V = vi-VN-NamMinhNeural - vi-VN (Male) # Vietnamese (Male)
|
214 |
-
****************************************************************************************************
|
215 |
-
"""
|
216 |
-
demo = gr.Interface(
|
217 |
-
fn=tts_interface,
|
218 |
-
inputs=[
|
219 |
-
gr.Textbox(label="Timestamped Text with Voice Changes and Duration", lines=10, placeholder='00:00:00,000 - 00:00:05,000 "Text" more text "1F Different Voice"'),
|
220 |
-
gr.Dropdown(choices=[""] + list(voices.keys()), label="Select Default Voice", value=default_voice),
|
221 |
-
gr.Slider(minimum=-50, maximum=50, value=0, label="Speech Rate Adjustment (%)", step=1),
|
222 |
-
gr.Slider(minimum=-50, maximum=50, value=0, label="Pitch Adjustment (Hz)", step=1),
|
223 |
-
gr.Slider(minimum=0.5, maximum=1.5, value=1.0, step=0.05, label="Speed Adjustment Factor")
|
224 |
-
],
|
225 |
-
outputs=[
|
226 |
-
gr.Audio(label="Generated Audio", type="filepath"),
|
227 |
-
gr.Markdown(label="Warning", visible=False)
|
228 |
-
],
|
229 |
-
title="TTS with Duration-Aware Speed Adjustment and In-Quote Voice Switching",
|
230 |
-
description=description,
|
231 |
-
analytics_enabled=False,
|
232 |
-
allow_flagging=False
|
233 |
-
)
|
234 |
-
return demo
|
235 |
-
|
236 |
-
if __name__ == "__main__":
|
237 |
-
demo = asyncio.run(create_demo())
|
238 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import soundfile as sf
|
2 |
import numpy as np
|
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
def get_silence(duration_ms=1000):
|
5 |
+
# Create silent audio segment with specified parameters
|
6 |
+
silent_audio = AudioSegment.silent(
|
7 |
duration=duration_ms,
|
8 |
+
frame_rate=24000 # 24kHz sampling rate
|
|
|
|
|
9 |
)
|
10 |
+
# Set audio parameters
|
11 |
+
silent_audio = silent_audio.set_channels(1) # Mono
|
12 |
+
silent_audio = silent_audio.set_sample_width(4) # 32-bit (4 bytes per sample)
|
13 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
|
14 |
+
# Export with specific bitrate and codec parameters
|
15 |
+
silent_audio.export(
|
16 |
+
tmp_file.name,
|
17 |
+
format="mp3",
|
18 |
+
bitrate="48k",
|
19 |
+
parameters=[
|
20 |
+
"-ac", "1", # Mono
|
21 |
+
"-ar", "24000", # Sample rate
|
22 |
+
"-sample_fmt", "s32", # 32-bit samples
|
23 |
+
"-codec:a", "libmp3lame" # MP3 codec
|
24 |
+
]
|
25 |
+
)
|
26 |
+
return tmp_file.name
|
27 |
+
|
28 |
+
# Get all available voices
|
29 |
async def get_voices():
|
30 |
+
|
31 |
try:
|
32 |
voices = await edge_tts.list_voices()
|
33 |
return {f"{v['ShortName']} - {v['Locale']} ({v['Gender']})": v['ShortName'] for v in voices}
|
|
|
|
|
|
|
34 |
|
35 |
async def generate_audio_with_voice_prefix(text_segment, default_voice, rate, pitch, target_duration_ms=None, speed_adjustment_factor=1.0):
|
36 |
"""Generates audio for a text segment, handling voice prefixes and adjusting rate for duration."""
|
37 |
+
current_voice_full = default_voice
|
38 |
+
current_voice_short = current_voice_full.split(" - ")[0] if current_voice_full else ""
|
39 |
current_rate = rate
|
40 |
current_pitch = pitch
|
41 |
+
processed_text = text_segment.strip()
|
42 |
+
print(f"Processing this text segment: {processed_text}") # Debug
|
43 |
+
voice_map = {
|
44 |
+
"1F": "en-GB-SoniaNeural",
|
45 |
+
"2M": "en-GB-RyanNeural",
|
46 |
+
"3M": "en-US-BrianMultilingualNeural",
|
47 |
+
"2F": "en-US-JennyNeural",
|
48 |
+
"1M": "en-AU-WilliamNeural",
|
49 |
+
"3F": "en-HK-YanNeural",
|
50 |
+
"4M": "en-GB-ThomasNeural",
|
51 |
+
"4F": "en-US-EmmaNeural",
|
52 |
+
"1O": "en-GB-RyanNeural", # Old Man
|
53 |
+
"1C": "en-GB-MaisieNeural", # Child
|
54 |
+
"1V": "vi-VN-HoaiMyNeural", # Vietnamese (Female)
|
55 |
+
"2V": "vi-VN-NamMinhNeural", # Vietnamese (Male)
|
56 |
+
"3V": "vi-VN-HoaiMyNeural", # Vietnamese (Female)
|
57 |
+
"4V": "vi-VN-NamMinhNeural", # Vietnamese (Male)
|
58 |
+
}
|
59 |
+
detect = 0
|
60 |
+
for prefix, voice_short in voice_map.items():
|
61 |
if processed_text.startswith(prefix):
|
62 |
current_voice_short = voice_short
|
63 |
if prefix in ["1F", "3F", "1V", "3V"]:
|
|
|
64 |
elif prefix in ["1O", "4V"]:
|
65 |
current_pitch = -20
|
66 |
current_rate = -10
|
67 |
+
detect = 1
|
68 |
processed_text = processed_text[len(prefix):].strip()
|
69 |
break
|
70 |
|
71 |
match = re.search(r'([A-Za-z]+)-?(\d+)', processed_text)
|
72 |
+
if match:
|
73 |
+
prefix_pitch = match.group(1)
|
74 |
+
number = int(match.group(2))
|
75 |
+
if prefix_pitch in voice_map:
|
76 |
+
current_pitch += number
|
77 |
+
processed_text = re.sub(r'[A-Za-z]+-?\d+', '', processed_text, count=1).strip()
|
78 |
+
elif detect:
|
79 |
+
processed_text = processed_text.lstrip('-0123456789').strip() # Remove potential leftover numbers
|
80 |
+
elif detect:
|
81 |
+
processed_text = processed_text[2:].strip()
|
82 |
if processed_text:
|
83 |
rate_str = f"{current_rate:+d}%"
|
84 |
pitch_str = f"{current_pitch:+d}Hz"
|
|
|
|
|
85 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
|
86 |
audio_path = tmp_file.name
|
87 |
await communicate.save(audio_path)
|
88 |
+
if target_duration_ms is not None and os.path.exists(audio_path):
|
89 |
+
audio = AudioSegment.from_mp3(audio_path)
|
90 |
+
audio_duration_ms = len(audio)
|
91 |
+
#print(f"Generated audio duration: {audio_duration_ms}ms, Target duration: {target_duration_ms}ms") # Debug
|
92 |
+
if audio_duration_ms > target_duration_ms and target_duration_ms > 0:
|
93 |
+
speed_factor = (audio_duration_ms / target_duration_ms) * speed_adjustment_factor
|
94 |
+
#print(f"Speed factor (after user adjustment): {speed_factor}") # Debug
|
95 |
+
if speed_factor > 0:
|
96 |
+
if speed_factor < 1.0:
|
97 |
+
speed_factor = 1.0
|
98 |
+
y, sr = librosa.load(audio_path, sr=None)
|
99 |
+
y_stretched = librosa.effects.time_stretch(y, rate=speed_factor)
|
100 |
+
sf.write(audio_path, y_stretched, sr)
|
101 |
+
else:
|
102 |
+
print("Generated audio is not longer than target duration, no speed adjustment.") # Debug
|
103 |
+
return audio_path
|
104 |
except Exception as e:
|
105 |
print(f"Edge TTS error processing '{processed_text}': {e}")
|
106 |
return None
|
107 |
return None
|
108 |
|
109 |
async def process_transcript_line(line, default_voice, rate, pitch, speed_adjustment_factor):
|
110 |
+
"""Processes a single transcript line with HH:MM:SS,milliseconds - HH:MM:SS,milliseconds timestamp."""
|
111 |
+
match = re.match(r'(\d{2}):(\d{2}):(\d{2}),(\d{3})\s+-\s+(\d{2}):(\d{2}):(\d{2}),(\d{3})\s+(.*)', line)
|
112 |
if match:
|
113 |
+
start_h, start_m, start_s, start_ms, end_h, end_m, end_s, end_ms, text_parts = match.groups()
|
114 |
+
start_time_ms = (
|
115 |
+
int(start_h) * 3600000 +
|
116 |
+
int(start_m) * 60000 +
|
117 |
+
int(start_s) * 1000 +
|
118 |
+
int(start_ms)
|
119 |
+
)
|
120 |
+
end_time_ms = (
|
121 |
+
int(end_h) * 3600000 +
|
122 |
+
int(end_m) * 60000 +
|
123 |
+
int(end_s) * 1000 +
|
124 |
+
int(end_ms)
|
125 |
+
)
|
126 |
duration_ms = end_time_ms - start_time_ms
|
127 |
|
128 |
audio_segments = []
|
129 |
+
split_parts = re.split(r'[“”"]', text_parts)
|
130 |
+
process_next = False
|
131 |
+
for part in split_parts:
|
132 |
if part == '"':
|
133 |
+
process_next = not process_next
|
134 |
continue
|
135 |
+
if process_next and part.strip():
|
136 |
+
audio_path = await generate_audio_with_voice_prefix(part, default_voice, rate, pitch, duration_ms, speed_adjustment_factor)
|
137 |
+
if audio_path:
|
138 |
+
audio_segments.append(audio_path)
|
139 |
+
elif not process_next and part.strip():
|
140 |
+
audio_path = await generate_audio_with_voice_prefix(part, default_voice, rate, pitch, duration_ms, speed_adjustment_factor)
|
141 |
if audio_path:
|
142 |
audio_segments.append(audio_path)
|
143 |
return start_time_ms, audio_segments, duration_ms
|
144 |
return None, None, None
|
145 |
|
146 |
async def transcript_to_speech(transcript_text, voice, rate, pitch, speed_adjustment_factor):
|
147 |
+
|
148 |
if not transcript_text.strip():
|
149 |
return None, gr.Warning("Please enter transcript text.")
|
150 |
if not voice:
|
|
|
153 |
lines = transcript_text.strip().split('\n')
|
154 |
timed_audio_segments = []
|
155 |
max_end_time_ms = 0
|
156 |
+
for line in lines:
|
157 |
+
start_time, audio_paths, duration = await process_transcript_line(line, voice, rate, pitch, speed_adjustment_factor)
|
158 |
+
if start_time is not None and audio_paths:
|
159 |
+
combined_line_audio = AudioSegment.empty()
|
160 |
+
current_time_ms = start_time
|
161 |
+
segment_duration = duration / len(audio_paths) if audio_paths else 0
|
162 |
+
for path in audio_paths:
|
163 |
+
if path: # Only process if audio_path is not None (meaning TTS was successful)
|
164 |
+
try:
|
165 |
+
audio = AudioSegment.from_mp3(path)
|
166 |
+
combined_line_audio += audio
|
167 |
+
os.remove(path)
|
168 |
+
except FileNotFoundError:
|
169 |
+
print(f"Warning: Audio file not found: {path}")
|
170 |
+
if combined_line_audio:
|
171 |
+
timed_audio_segments.append({'start': start_time, 'audio': combined_line_audio})
|
172 |
+
max_end_time_ms = max(max_end_time_ms, start_time + len(combined_line_audio))
|
173 |
+
elif audio_paths:
|
174 |
+
for path in audio_paths:
|
175 |
+
if path:
|
176 |
+
try:
|
177 |
+
os.remove(path)
|
178 |
+
except FileNotFoundError:
|
179 |
+
pass # Clean up even if no timestamp
|
180 |
+
if not timed_audio_segments:
|
181 |
+
return None, "No processable audio segments found."
|
182 |
+
final_audio = AudioSegment.silent(duration=max_end_time_ms, frame_rate=24000)
|
183 |
+
for segment in timed_audio_segments:
|
184 |
+
final_audio = final_audio.overlay(segment['audio'], position=segment['start'])
|
185 |
+
combined_audio_path = tempfile.mktemp(suffix=".mp3")
|
186 |
+
final_audio.export(combined_audio_path, format="mp3")
|
187 |
+
return combined_audio_path, None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
188 |
|
189 |
@spaces.GPU
|
190 |
def tts_interface(transcript, voice, rate, pitch, speed_adjustment_factor):
|
191 |
+
|
192 |
audio, warning = asyncio.run(transcript_to_speech(transcript, voice, rate, pitch, speed_adjustment_factor))
|
193 |
return audio, warning
|
194 |
|
195 |
async def create_demo():
|
196 |
+
|
197 |
voices = await get_voices()
|
198 |
default_voice = "en-US-AndrewMultilingualNeural - en-US (Male)"
|
199 |
+
description = """
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|