Spaces:
Sleeping
Sleeping
import spaces | |
import gradio as gr | |
import edge_tts | |
import asyncio | |
import tempfile | |
import os | |
import re # Import the regular expression module | |
# Get all available voices | |
async def get_voices(): | |
voices = await edge_tts.list_voices() | |
return {f"{v['ShortName']} - {v['Locale']} ({v['Gender']})": v['ShortName'] for v in voices} | |
# Text-to-speech function for a single paragraph | |
async def paragraph_to_speech(text, voice, rate, pitch): | |
voice1 ="vi-VN-NamMinhNeural - vi-VN (Male)" #good for reading | |
voice1F ="en-US-EmmaMultilingualNeural - en-US (Female)" | |
voice2 ="ko-KR-HyunsuMultilingualNeural - ko-KR (Male)" | |
voice2F ="de-DE-SeraphinaMultilingualNeural - de-DE (Female)" | |
voice3 = "pt-BR-ThalitaMultilingualNeural - pt-BR (Female)" #Child | |
voice_it_M = "it-IT-GiuseppeMultilingualNeural - it-IT (Male)" | |
voice_de_M = "de-DE-FlorianMultilingualNeural - de-DE (Male)" | |
voice_fr_M = "fr-FR-RemyMultilingualNeural - fr-FR (Male)" | |
voice_fr_F = "fr-FR-VivienneMultilingualNeural - fr-FR (Female)" | |
voice_en_US_M = "en-US-BrianMultilingualNeural - en-US (Male)" | |
voice_en_US_F2 = "en-US-AvaMultilingualNeural - en-US (Female)" | |
if not text.strip(): | |
return None | |
prefix_pattern = re.compile(r"^(1F|1M|2F|2M|1C|3M|3F)([-]?\d*)") | |
match = prefix_pattern.match(text) | |
voice_short_name = (voice or default_voice).split(" - ")[0] | |
extracted_pitch = None | |
text2 = text | |
if match: | |
prefix = match.group(1) | |
pitch_mod_str = match.group(2) | |
text2 = text[len(match.group(0)):] # Remove the prefix and optional pitch modifier | |
print(f">>>Processing text: '{text}'") | |
if prefix == "1F": | |
voice_short_name = voice1F.split(" - ")[0] | |
elif prefix == "1M": | |
voice_short_name = voice1.split(" - ")[0] | |
elif prefix == "2F": | |
voice_short_name = voice2F.split(" - ")[0] | |
elif prefix == "2M": | |
voice_short_name = voice2.split(" - ")[0] | |
elif prefix == "1C": | |
voice_short_name = voice3.split(" - ")[0] | |
elif prefix == "3M": | |
voice_short_name = voice_it_M.split(" - ")[0] # Using Italian Male for 3M | |
elif prefix == "3F": | |
voice_short_name = voice_fr_F.split(" - ")[0] # Using French Female for 3F | |
if pitch_mod_str: | |
try: | |
extracted_pitch = int(pitch_mod_str) | |
except ValueError: | |
print(f"Warning: Invalid pitch modifier '{pitch_mod_str}'") | |
rate_str = f"{rate:+d}%" | |
current_pitch = pitch | |
if extracted_pitch is not None: | |
current_pitch += extracted_pitch | |
print(f"Applying pitch modification: {extracted_pitch}Hz, new pitch: {current_pitch}Hz") | |
elif (voice_short_name == voice3.split(" - ")[0]): | |
current_pitch = 70 # Default pitch for the child voice | |
pitch_str = f"{current_pitch:+d}Hz" | |
try: | |
communicate = edge_tts.Communicate(text2, voice_short_name, rate=rate_str, pitch=pitch_str) | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file: | |
tmp_path = tmp_file.name | |
await communicate.save(tmp_path) | |
return tmp_path | |
except Exception as e: | |
print(f"Edge TTS error processing '{processed_text}': {e}") | |
return None | |
#return None | |
# Main text-to-speech function that processes paragraphs | |
async def text_to_speech(text, voice, rate, pitch): | |
if not text.strip(): | |
return None, gr.Warning("Please enter text to convert.") | |
if not voice: | |
return None, gr.Warning("Please select a voice.") | |
# Split by quote marks | |
paragraphs = [p.strip() for p in re.split(r'"', text) if p.strip()] | |
audio_files = [] | |
for paragraph in paragraphs: | |
audio_path = await paragraph_to_speech(paragraph, voice, rate, pitch) | |
if audio_path: | |
audio_files.append(audio_path) | |
if not audio_files: | |
return None, None # No audio generated | |
# Combine audio files if there are multiple paragraphs | |
if len(audio_files) == 1: | |
return audio_files[0], None | |
else: | |
# Simple concatenation for now - consider using a proper audio editing library for smoother transitions | |
combined_audio_path = tempfile.mktemp(suffix=".mp3") | |
with open(combined_audio_path, 'wb') as outfile: | |
for filename in audio_files: | |
with open(filename, 'rb') as infile: | |
outfile.write(infile.read()) | |
os.remove(filename) # Clean up individual files | |
return combined_audio_path, None | |
# Gradio interface function | |
def tts_interface(text, voice, rate, pitch): | |
audio, warning = asyncio.run(text_to_speech(text, voice, rate, pitch)) | |
return audio, warning | |
# Create Gradio application | |
import gradio as gr | |
async def create_demo(): | |
voices = await get_voices() | |
default_voice = "vi-VN-HoaiMyNeural - vi-VN (Female)" # 👈 Pick one of the available voices | |
description = """ | |
Default = vi-VN-HoaiMyNeural - vi-VN (Female), | |
other voices 1F:en-US-EmmaMultilingualNeural - en-US (Female), | |
1M:vi-VN-NamMinhNeural - vi-VN (Male), | |
2F:de-DE-SeraphinaMultilingualNeural - de-DE (Female), | |
2M:ko-KR-HyunsuMultilingualNeural - ko-KR (Male), | |
1C:pt-BR-ThalitaMultilingualNeural - pt-BR (Female), | |
3M:it-IT-GiuseppeMultilingualNeural - it-IT (Male), | |
3F:fr-FR-VivienneMultilingualNeural - fr-FR (Female) | |
You can add a pitch modifier after the voice prefix (e.g., 1M-15 for +15Hz pitch). | |
Enter your text, select a voice, and adjust the speech rate and pitch. | |
The application will process your text segment by segment based on quote marks. | |
""" | |
demo = gr.Interface( | |
fn=tts_interface, | |
inputs=[ | |
gr.Textbox(label="Input Text", lines=5, placeholder='Separate dialogue with quote marks. Add voice prefix (e.g., 1M, 1F) before dialogue. You can also add a pitch modifier like 1M-20 "Hello!"'), | |
gr.Dropdown(choices=[""] + list(voices.keys()), label="Select Default Voice", value=default_voice), | |
gr.Slider(minimum=-50, maximum=50, value=0, label="Default Speech Rate Adjustment (%)", step=1), | |
gr.Slider(minimum=-20, maximum=100, value=0, label="Default Pitch Adjustment (Hz)", step=1) | |
], | |
outputs=[ | |
gr.Audio(label="Generated Audio", type="filepath"), | |
gr.Markdown(label="Warning", visible=False) | |
], | |
title="Vietnamese TTS - all AI voices & pitch changes", | |
description=description, | |
article="Process text segments with voice prefixes and optional pitch modifiers.", | |
analytics_enabled=False, | |
allow_flagging=False | |
) | |
return demo | |
# Run the application | |
if __name__ == "__main__": | |
demo = asyncio.run(create_demo()) | |
demo.launch() |