Spaces:
Runtime error
Runtime error
import gradio as gr | |
#import spaces | |
import torch | |
from diffusers import AutoencoderKL, TCDScheduler | |
from diffusers.models.model_loading_utils import load_state_dict | |
from gradio_imageslider import ImageSlider | |
from huggingface_hub import hf_hub_download | |
from controlnet_union import ControlNetModel_Union | |
from pipeline_fill_sd_xl import StableDiffusionXLFillPipeline | |
import devicetorch | |
from PIL import Image | |
MODELS = { | |
"RealVisXL V5.0 Lightning": "SG161222/RealVisXL_V5.0_Lightning", | |
} | |
DEVICE = devicetorch.get(torch) | |
pipe = None | |
def init(): | |
global pipe | |
if pipe is None: | |
config_file = hf_hub_download( | |
"xinsir/controlnet-union-sdxl-1.0", | |
filename="config_promax.json", | |
) | |
config = ControlNetModel_Union.load_config(config_file) | |
controlnet_model = ControlNetModel_Union.from_config(config) | |
model_file = hf_hub_download( | |
"xinsir/controlnet-union-sdxl-1.0", | |
filename="diffusion_pytorch_model_promax.safetensors", | |
) | |
state_dict = load_state_dict(model_file) | |
model, _, _, _, _ = ControlNetModel_Union._load_pretrained_model( | |
controlnet_model, state_dict, model_file, "xinsir/controlnet-union-sdxl-1.0" | |
) | |
model.to(device=DEVICE, dtype=torch.float16) | |
vae = AutoencoderKL.from_pretrained( | |
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16 | |
).to(DEVICE) | |
pipe = StableDiffusionXLFillPipeline.from_pretrained( | |
"SG161222/RealVisXL_V5.0_Lightning", | |
torch_dtype=torch.float16, | |
vae=vae, | |
controlnet=model, | |
variant="fp16", | |
).to(DEVICE) | |
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config) | |
#@spaces.GPU(duration=16) | |
def fill_image(prompt, image, model_selection): | |
init() | |
print(f"image {image}") | |
source = image["background"] | |
mask = image["layers"][0] | |
alpha_channel = mask.split()[3] | |
binary_mask = alpha_channel.point(lambda p: p > 0 and 255) | |
cnet_image = source.copy() | |
cnet_image.paste(0, (0, 0), binary_mask) | |
( | |
prompt_embeds, | |
negative_prompt_embeds, | |
pooled_prompt_embeds, | |
negative_pooled_prompt_embeds, | |
) = pipe.encode_prompt(prompt, DEVICE, True) | |
for image in pipe( | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
pooled_prompt_embeds=pooled_prompt_embeds, | |
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, | |
image=cnet_image, | |
): | |
yield image, cnet_image | |
image = image.convert("RGBA") | |
cnet_image.paste(image, (0, 0), binary_mask) | |
yield source, cnet_image | |
def clear_result(): | |
return gr.update(value=None) | |
def resize(image): | |
print(f"resize image={image}") | |
source = image["background"] | |
image["background"].thumbnail((1024, 1024), Image.LANCZOS) | |
print(f"resized image={image}") | |
return image["background"] | |
#css = """ | |
#.gradio-container { | |
# width: 1024px !important; | |
#} | |
#""" | |
#with gr.Blocks(css=css, fill_width=True) as demo: | |
with gr.Blocks(fill_width=True) as demo: | |
with gr.Row(): | |
prompt = gr.Textbox(value="high quality", label="Prompt", visible=False) | |
run_button = gr.Button("Generate") | |
with gr.Row(): | |
input_image = gr.ImageMask( | |
type="pil", | |
label="Input Image", | |
# crop_size=(1024, 1024), | |
canvas_size=(1024, 1024), | |
layers=False, | |
sources=["upload"], | |
) | |
result = ImageSlider( | |
interactive=False, | |
label="Generated Image", | |
) | |
model_selection = gr.Dropdown( | |
choices=list(MODELS.keys()), | |
value="RealVisXL V5.0 Lightning", | |
label="Model", | |
) | |
run_button.click( | |
fn=clear_result, | |
inputs=None, | |
outputs=result, | |
).then( | |
fn=fill_image, | |
inputs=[prompt, input_image, model_selection], | |
outputs=result, | |
) | |
input_image.upload(fn=resize, inputs=input_image, outputs=input_image) | |
demo.launch(share=False) | |