Commit
·
5809e83
1
Parent(s):
ed1cbdb
change model path
Browse files- app.py +174 -174
- requirements.txt +2 -1
app.py
CHANGED
|
@@ -1,5 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
# import gradio as gr
|
| 2 |
# import torch
|
|
|
|
| 3 |
# import numpy as np
|
| 4 |
# from PIL import Image
|
| 5 |
# from torchvision.models.segmentation import deeplabv3_resnet50, DeepLabV3_ResNet50_Weights
|
|
@@ -10,16 +113,82 @@
|
|
| 10 |
|
| 11 |
|
| 12 |
# # ---------------- 下载并加载 LaMa 官方权重 ----------------
|
| 13 |
-
# # repo_id = "saic-mdal/lama-big"
|
| 14 |
-
# # model_path = hf_hub_download(repo_id=repo_id, filename="big-lama.pt")
|
| 15 |
# zip_path = hf_hub_download(repo_id="smartywu/big-lama", filename="big-lama.zip")
|
| 16 |
-
# import zipfile
|
| 17 |
# with zipfile.ZipFile(zip_path, 'r') as z:
|
| 18 |
# z.extractall("./")
|
| 19 |
-
# model_path = "./models/best.ckpt"
|
| 20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
# lama_model.eval()
|
| 22 |
|
|
|
|
| 23 |
# print("torch:", torch.__version__)
|
| 24 |
# print("numpy:", np.__version__)
|
| 25 |
|
|
@@ -99,172 +268,3 @@
|
|
| 99 |
|
| 100 |
# if __name__ == "__main__":
|
| 101 |
# demo.launch()
|
| 102 |
-
|
| 103 |
-
import gradio as gr
|
| 104 |
-
import torch
|
| 105 |
-
import torch.nn as nn
|
| 106 |
-
import numpy as np
|
| 107 |
-
from PIL import Image
|
| 108 |
-
from torchvision.models.segmentation import deeplabv3_resnet50, DeepLabV3_ResNet50_Weights
|
| 109 |
-
from huggingface_hub import hf_hub_download
|
| 110 |
-
import cv2
|
| 111 |
-
import zipfile
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
# ---------------- 下载并加载 LaMa 官方权重 ----------------
|
| 116 |
-
zip_path = hf_hub_download(repo_id="smartywu/big-lama", filename="big-lama.zip")
|
| 117 |
-
with zipfile.ZipFile(zip_path, 'r') as z:
|
| 118 |
-
z.extractall("./")
|
| 119 |
-
model_path = "./big-lama/models/best.ckpt"
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
# ==========================================================
|
| 123 |
-
# LaMa FBAResUNet 定义(官方结构)
|
| 124 |
-
# ==========================================================
|
| 125 |
-
class GatedConv(nn.Module):
|
| 126 |
-
def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, dilation=1):
|
| 127 |
-
super().__init__()
|
| 128 |
-
padding = (kernel_size - 1) // 2 * dilation
|
| 129 |
-
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride,
|
| 130 |
-
padding=padding, dilation=dilation)
|
| 131 |
-
self.mask_conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride,
|
| 132 |
-
padding=padding, dilation=dilation)
|
| 133 |
-
self.sigmoid = nn.Sigmoid()
|
| 134 |
-
|
| 135 |
-
def forward(self, x):
|
| 136 |
-
feat = self.conv(x)
|
| 137 |
-
mask = self.sigmoid(self.mask_conv(x))
|
| 138 |
-
return feat * mask
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
class FBAResUNet(nn.Module):
|
| 142 |
-
def __init__(self, input_channels=4, output_channels=3, num_filters=64):
|
| 143 |
-
super().__init__()
|
| 144 |
-
self.enc1 = GatedConv(input_channels, num_filters)
|
| 145 |
-
self.enc2 = GatedConv(num_filters, num_filters * 2, stride=2)
|
| 146 |
-
self.enc3 = GatedConv(num_filters * 2, num_filters * 4, stride=2)
|
| 147 |
-
self.enc4 = GatedConv(num_filters * 4, num_filters * 8, stride=2)
|
| 148 |
-
|
| 149 |
-
self.middle = GatedConv(num_filters * 8, num_filters * 8)
|
| 150 |
-
|
| 151 |
-
self.dec4 = nn.ConvTranspose2d(num_filters * 8, num_filters * 4, kernel_size=4, stride=2, padding=1)
|
| 152 |
-
self.dec3 = nn.ConvTranspose2d(num_filters * 8, num_filters * 2, kernel_size=4, stride=2, padding=1)
|
| 153 |
-
self.dec2 = nn.ConvTranspose2d(num_filters * 4, num_filters, kernel_size=4, stride=2, padding=1)
|
| 154 |
-
self.dec1 = nn.Conv2d(num_filters * 2, output_channels, kernel_size=3, padding=1)
|
| 155 |
-
|
| 156 |
-
self.relu = nn.ReLU(inplace=True)
|
| 157 |
-
|
| 158 |
-
def forward(self, image, mask):
|
| 159 |
-
# image: [B,3,H,W], mask: [B,1,H,W]
|
| 160 |
-
x = torch.cat([image, mask], dim=1) # -> [B,4,H,W]
|
| 161 |
-
|
| 162 |
-
e1 = self.enc1(x)
|
| 163 |
-
e2 = self.enc2(self.relu(e1))
|
| 164 |
-
e3 = self.enc3(self.relu(e2))
|
| 165 |
-
e4 = self.enc4(self.relu(e3))
|
| 166 |
-
|
| 167 |
-
m = self.middle(self.relu(e4))
|
| 168 |
-
|
| 169 |
-
d4 = self.relu(self.dec4(m))
|
| 170 |
-
d4 = torch.cat([d4, e3], dim=1)
|
| 171 |
-
d3 = self.relu(self.dec3(d4))
|
| 172 |
-
d3 = torch.cat([d3, e2], dim=1)
|
| 173 |
-
d2 = self.relu(self.dec2(d3))
|
| 174 |
-
d2 = torch.cat([d2, e1], dim=1)
|
| 175 |
-
out = torch.sigmoid(self.dec1(d2))
|
| 176 |
-
return out
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
# ==========================================================
|
| 180 |
-
# 加载 LaMa 预训练权重
|
| 181 |
-
# ==========================================================
|
| 182 |
-
checkpoint = torch.load(model_path, map_location="cpu")
|
| 183 |
-
lama_model = FBAResUNet()
|
| 184 |
-
if "state_dict" in checkpoint:
|
| 185 |
-
state_dict = {k.replace("netG.", ""): v for k, v in checkpoint["state_dict"].items()}
|
| 186 |
-
else:
|
| 187 |
-
state_dict = checkpoint
|
| 188 |
-
lama_model.load_state_dict(state_dict, strict=False)
|
| 189 |
-
lama_model.eval()
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
print("torch:", torch.__version__)
|
| 193 |
-
print("numpy:", np.__version__)
|
| 194 |
-
|
| 195 |
-
# ---- 加载分割模型(CPU) ----
|
| 196 |
-
device = torch.device("cpu")
|
| 197 |
-
weights = DeepLabV3_ResNet50_Weights.COCO_WITH_VOC_LABELS_V1
|
| 198 |
-
model = deeplabv3_resnet50(weights=weights).to(device).eval()
|
| 199 |
-
preprocess = weights.transforms()
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
MAX_SIDE = 1024 # 为了速度与内存,限制输入最大边
|
| 203 |
-
|
| 204 |
-
def _resize_if_needed(pil_img: Image.Image, max_side=MAX_SIDE) -> Image.Image:
|
| 205 |
-
w, h = pil_img.size
|
| 206 |
-
if max(w, h) <= max_side:
|
| 207 |
-
return pil_img
|
| 208 |
-
r = max_side / float(max(w, h))
|
| 209 |
-
return pil_img.resize((int(w * r), int(h * r)), Image.BILINEAR)
|
| 210 |
-
|
| 211 |
-
def segment(image: Image.Image):
|
| 212 |
-
print("DEBUG: type(image) =", type(image), "mode=", getattr(image, "mode", None))
|
| 213 |
-
if not isinstance(image, Image.Image):
|
| 214 |
-
image = Image.fromarray(image)
|
| 215 |
-
|
| 216 |
-
image = image.convert("RGB")
|
| 217 |
-
image = _resize_if_needed(image)
|
| 218 |
-
|
| 219 |
-
# 预处理并推理
|
| 220 |
-
x = torch.from_numpy(np.array(image)).permute(2, 0, 1).float() / 255.0
|
| 221 |
-
x = x.unsqueeze(0).to(device) # [1,3,H,W]
|
| 222 |
-
|
| 223 |
-
with torch.no_grad():
|
| 224 |
-
out = model(x)["out"][0] # [C,H,W],C=21(含背景)
|
| 225 |
-
pred = out.argmax(0).cpu().numpy() # [H,W]
|
| 226 |
-
|
| 227 |
-
# 前景 = 非背景(背景类在COCO VOC权重下是0)
|
| 228 |
-
fg = (pred != 0).astype(np.uint8)
|
| 229 |
-
|
| 230 |
-
# ---------------- mask 膨胀 ----------------
|
| 231 |
-
kernel = np.ones((19,19), np.uint8)
|
| 232 |
-
fg_dilated = cv2.dilate(fg, kernel, iterations=1)
|
| 233 |
-
print("add dilated process!")
|
| 234 |
-
|
| 235 |
-
mask_img = Image.fromarray((fg_dilated * 255).astype(np.uint8), mode="L")
|
| 236 |
-
|
| 237 |
-
# 叠加彩色遮罩(红色半透明)
|
| 238 |
-
base = image.convert("RGBA")
|
| 239 |
-
overlay = Image.new("RGBA", base.size, (255, 0, 0, 0))
|
| 240 |
-
alpha = Image.fromarray((fg_dilated * 120).astype(np.uint8))
|
| 241 |
-
overlay.putalpha(alpha)
|
| 242 |
-
blended = Image.alpha_composite(base, overlay).convert("RGB")
|
| 243 |
-
|
| 244 |
-
# ---- LaMa 擦除 ----
|
| 245 |
-
img_np = np.array(image) # HWC, uint8
|
| 246 |
-
mask_np = np.array(mask_img) # H,W, 0/255
|
| 247 |
-
img_t = torch.from_numpy(img_np).permute(2, 0, 1).float().unsqueeze(0) / 255.0
|
| 248 |
-
mask_t = torch.from_numpy(mask_np).unsqueeze(0).unsqueeze(0).float() / 255.0
|
| 249 |
-
with torch.no_grad():
|
| 250 |
-
inpainted_t = lama_model(img_t, mask_t) # [1,3,H,W]
|
| 251 |
-
inpainted_np = (inpainted_t[0].permute(1, 2, 0).numpy() * 255).astype(np.uint8)
|
| 252 |
-
inpainted_img = Image.fromarray(inpainted_np)
|
| 253 |
-
|
| 254 |
-
return blended, mask_img, inpainted_img
|
| 255 |
-
|
| 256 |
-
# ---- Gradio 界面 ----
|
| 257 |
-
demo = gr.Interface(
|
| 258 |
-
fn=segment,
|
| 259 |
-
inputs=gr.Image(type="pil", label="Upload Image"),
|
| 260 |
-
outputs=[
|
| 261 |
-
gr.Image(type="pil", label="Overlay (foreground)"),
|
| 262 |
-
gr.Image(type="pil", label="Binary Mask (foreground=white)"),
|
| 263 |
-
gr.Image(type="pil", label="inpaint result"),
|
| 264 |
-
],
|
| 265 |
-
title="Semantic Segmentation + LaMa Inpainting",
|
| 266 |
-
description="DeepLabV3 分割 + Mask 膨胀 + LaMa 擦除,运行在 CPU 环境。"
|
| 267 |
-
)
|
| 268 |
-
|
| 269 |
-
if __name__ == "__main__":
|
| 270 |
-
demo.launch()
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
import numpy as np
|
| 4 |
+
from PIL import Image
|
| 5 |
+
from torchvision.models.segmentation import deeplabv3_resnet50, DeepLabV3_ResNet50_Weights
|
| 6 |
+
from huggingface_hub import hf_hub_download
|
| 7 |
+
import cv2
|
| 8 |
+
import zipfile
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
# ---------------- 下载并加载 LaMa 官方权重 ----------------
|
| 13 |
+
repo_id = "JosephCatrambone/big-lama-torchscript"
|
| 14 |
+
model_path = hf_hub_download(repo_id=repo_id, filename="big-lama.pt")
|
| 15 |
+
# zip_path = hf_hub_download(repo_id="smartywu/big-lama", filename="big-lama.zip")
|
| 16 |
+
# import zipfile
|
| 17 |
+
# with zipfile.ZipFile(zip_path, 'r') as z:
|
| 18 |
+
# z.extractall("./")
|
| 19 |
+
# model_path = "./models/best.ckpt"
|
| 20 |
+
lama_model = torch.jit.load(model_path, map_location="cpu")
|
| 21 |
+
lama_model.eval()
|
| 22 |
+
|
| 23 |
+
print("torch:", torch.__version__)
|
| 24 |
+
print("numpy:", np.__version__)
|
| 25 |
+
|
| 26 |
+
# ---- 加载分割模型(CPU) ----
|
| 27 |
+
device = torch.device("cpu")
|
| 28 |
+
weights = DeepLabV3_ResNet50_Weights.COCO_WITH_VOC_LABELS_V1
|
| 29 |
+
model = deeplabv3_resnet50(weights=weights).to(device).eval()
|
| 30 |
+
preprocess = weights.transforms()
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
MAX_SIDE = 1024 # 为了速度与内存,限制输入最大边
|
| 34 |
+
|
| 35 |
+
def _resize_if_needed(pil_img: Image.Image, max_side=MAX_SIDE) -> Image.Image:
|
| 36 |
+
w, h = pil_img.size
|
| 37 |
+
if max(w, h) <= max_side:
|
| 38 |
+
return pil_img
|
| 39 |
+
r = max_side / float(max(w, h))
|
| 40 |
+
return pil_img.resize((int(w * r), int(h * r)), Image.BILINEAR)
|
| 41 |
+
|
| 42 |
+
def segment(image: Image.Image):
|
| 43 |
+
print("DEBUG: type(image) =", type(image), "mode=", getattr(image, "mode", None))
|
| 44 |
+
if not isinstance(image, Image.Image):
|
| 45 |
+
image = Image.fromarray(image)
|
| 46 |
+
|
| 47 |
+
image = image.convert("RGB")
|
| 48 |
+
image = _resize_if_needed(image)
|
| 49 |
+
|
| 50 |
+
# 预处理并推理
|
| 51 |
+
x = torch.from_numpy(np.array(image)).permute(2, 0, 1).float() / 255.0
|
| 52 |
+
x = x.unsqueeze(0).to(device) # [1,3,H,W]
|
| 53 |
+
|
| 54 |
+
with torch.no_grad():
|
| 55 |
+
out = model(x)["out"][0] # [C,H,W],C=21(含背景)
|
| 56 |
+
pred = out.argmax(0).cpu().numpy() # [H,W]
|
| 57 |
+
|
| 58 |
+
# 前景 = 非背景(背景类在COCO VOC权重下是0)
|
| 59 |
+
fg = (pred != 0).astype(np.uint8)
|
| 60 |
+
|
| 61 |
+
# ---------------- mask 膨胀 ----------------
|
| 62 |
+
kernel = np.ones((19,19), np.uint8)
|
| 63 |
+
fg_dilated = cv2.dilate(fg, kernel, iterations=1)
|
| 64 |
+
print("add dilated process!")
|
| 65 |
+
|
| 66 |
+
mask_img = Image.fromarray((fg_dilated * 255).astype(np.uint8), mode="L")
|
| 67 |
+
|
| 68 |
+
# 叠加彩色遮罩(红色半透明)
|
| 69 |
+
base = image.convert("RGBA")
|
| 70 |
+
overlay = Image.new("RGBA", base.size, (255, 0, 0, 0))
|
| 71 |
+
alpha = Image.fromarray((fg_dilated * 120).astype(np.uint8))
|
| 72 |
+
overlay.putalpha(alpha)
|
| 73 |
+
blended = Image.alpha_composite(base, overlay).convert("RGB")
|
| 74 |
+
|
| 75 |
+
# ---- LaMa 擦除 ----
|
| 76 |
+
img_np = np.array(image) # HWC, uint8
|
| 77 |
+
mask_np = np.array(mask_img) # H,W, 0/255
|
| 78 |
+
img_t = torch.from_numpy(img_np).permute(2, 0, 1).float().unsqueeze(0) / 255.0
|
| 79 |
+
mask_t = torch.from_numpy(mask_np).unsqueeze(0).unsqueeze(0).float() / 255.0
|
| 80 |
+
with torch.no_grad():
|
| 81 |
+
inpainted_t = lama_model(img_t, mask_t) # [1,3,H,W]
|
| 82 |
+
inpainted_np = (inpainted_t[0].permute(1, 2, 0).numpy() * 255).astype(np.uint8)
|
| 83 |
+
inpainted_img = Image.fromarray(inpainted_np)
|
| 84 |
+
|
| 85 |
+
return blended, mask_img, inpainted_img
|
| 86 |
+
|
| 87 |
+
# ---- Gradio 界面 ----
|
| 88 |
+
demo = gr.Interface(
|
| 89 |
+
fn=segment,
|
| 90 |
+
inputs=gr.Image(type="pil", label="Upload Image"),
|
| 91 |
+
outputs=[
|
| 92 |
+
gr.Image(type="pil", label="Overlay (foreground)"),
|
| 93 |
+
gr.Image(type="pil", label="Binary Mask (foreground=white)"),
|
| 94 |
+
gr.Image(type="pil", label="inpaint result"),
|
| 95 |
+
],
|
| 96 |
+
title="Semantic Segmentation + LaMa Inpainting",
|
| 97 |
+
description="DeepLabV3 分割 + Mask 膨胀 + LaMa 擦除,运行在 CPU 环境。"
|
| 98 |
+
)
|
| 99 |
+
|
| 100 |
+
if __name__ == "__main__":
|
| 101 |
+
demo.launch()
|
| 102 |
+
|
| 103 |
# import gradio as gr
|
| 104 |
# import torch
|
| 105 |
+
# import torch.nn as nn
|
| 106 |
# import numpy as np
|
| 107 |
# from PIL import Image
|
| 108 |
# from torchvision.models.segmentation import deeplabv3_resnet50, DeepLabV3_ResNet50_Weights
|
|
|
|
| 113 |
|
| 114 |
|
| 115 |
# # ---------------- 下载并加载 LaMa 官方权重 ----------------
|
|
|
|
|
|
|
| 116 |
# zip_path = hf_hub_download(repo_id="smartywu/big-lama", filename="big-lama.zip")
|
|
|
|
| 117 |
# with zipfile.ZipFile(zip_path, 'r') as z:
|
| 118 |
# z.extractall("./")
|
| 119 |
+
# model_path = "./big-lama/models/best.ckpt"
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
# # ==========================================================
|
| 123 |
+
# # LaMa FBAResUNet 定义(官方结构)
|
| 124 |
+
# # ==========================================================
|
| 125 |
+
# class GatedConv(nn.Module):
|
| 126 |
+
# def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, dilation=1):
|
| 127 |
+
# super().__init__()
|
| 128 |
+
# padding = (kernel_size - 1) // 2 * dilation
|
| 129 |
+
# self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride,
|
| 130 |
+
# padding=padding, dilation=dilation)
|
| 131 |
+
# self.mask_conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride,
|
| 132 |
+
# padding=padding, dilation=dilation)
|
| 133 |
+
# self.sigmoid = nn.Sigmoid()
|
| 134 |
+
|
| 135 |
+
# def forward(self, x):
|
| 136 |
+
# feat = self.conv(x)
|
| 137 |
+
# mask = self.sigmoid(self.mask_conv(x))
|
| 138 |
+
# return feat * mask
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
# class FBAResUNet(nn.Module):
|
| 142 |
+
# def __init__(self, input_channels=4, output_channels=3, num_filters=64):
|
| 143 |
+
# super().__init__()
|
| 144 |
+
# self.enc1 = GatedConv(input_channels, num_filters)
|
| 145 |
+
# self.enc2 = GatedConv(num_filters, num_filters * 2, stride=2)
|
| 146 |
+
# self.enc3 = GatedConv(num_filters * 2, num_filters * 4, stride=2)
|
| 147 |
+
# self.enc4 = GatedConv(num_filters * 4, num_filters * 8, stride=2)
|
| 148 |
+
|
| 149 |
+
# self.middle = GatedConv(num_filters * 8, num_filters * 8)
|
| 150 |
+
|
| 151 |
+
# self.dec4 = nn.ConvTranspose2d(num_filters * 8, num_filters * 4, kernel_size=4, stride=2, padding=1)
|
| 152 |
+
# self.dec3 = nn.ConvTranspose2d(num_filters * 8, num_filters * 2, kernel_size=4, stride=2, padding=1)
|
| 153 |
+
# self.dec2 = nn.ConvTranspose2d(num_filters * 4, num_filters, kernel_size=4, stride=2, padding=1)
|
| 154 |
+
# self.dec1 = nn.Conv2d(num_filters * 2, output_channels, kernel_size=3, padding=1)
|
| 155 |
+
|
| 156 |
+
# self.relu = nn.ReLU(inplace=True)
|
| 157 |
+
|
| 158 |
+
# def forward(self, image, mask):
|
| 159 |
+
# # image: [B,3,H,W], mask: [B,1,H,W]
|
| 160 |
+
# x = torch.cat([image, mask], dim=1) # -> [B,4,H,W]
|
| 161 |
+
|
| 162 |
+
# e1 = self.enc1(x)
|
| 163 |
+
# e2 = self.enc2(self.relu(e1))
|
| 164 |
+
# e3 = self.enc3(self.relu(e2))
|
| 165 |
+
# e4 = self.enc4(self.relu(e3))
|
| 166 |
+
|
| 167 |
+
# m = self.middle(self.relu(e4))
|
| 168 |
+
|
| 169 |
+
# d4 = self.relu(self.dec4(m))
|
| 170 |
+
# d4 = torch.cat([d4, e3], dim=1)
|
| 171 |
+
# d3 = self.relu(self.dec3(d4))
|
| 172 |
+
# d3 = torch.cat([d3, e2], dim=1)
|
| 173 |
+
# d2 = self.relu(self.dec2(d3))
|
| 174 |
+
# d2 = torch.cat([d2, e1], dim=1)
|
| 175 |
+
# out = torch.sigmoid(self.dec1(d2))
|
| 176 |
+
# return out
|
| 177 |
+
|
| 178 |
+
|
| 179 |
+
# # ==========================================================
|
| 180 |
+
# # 加载 LaMa 预训练权重
|
| 181 |
+
# # ==========================================================
|
| 182 |
+
# checkpoint = torch.load(model_path, map_location="cpu")
|
| 183 |
+
# lama_model = FBAResUNet()
|
| 184 |
+
# if "state_dict" in checkpoint:
|
| 185 |
+
# state_dict = {k.replace("netG.", ""): v for k, v in checkpoint["state_dict"].items()}
|
| 186 |
+
# else:
|
| 187 |
+
# state_dict = checkpoint
|
| 188 |
+
# lama_model.load_state_dict(state_dict, strict=False)
|
| 189 |
# lama_model.eval()
|
| 190 |
|
| 191 |
+
|
| 192 |
# print("torch:", torch.__version__)
|
| 193 |
# print("numpy:", np.__version__)
|
| 194 |
|
|
|
|
| 268 |
|
| 269 |
# if __name__ == "__main__":
|
| 270 |
# demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
|
@@ -16,5 +16,6 @@ opencv-python
|
|
| 16 |
gradio>=4.0.0
|
| 17 |
|
| 18 |
# ---- LaMa inpainting 后续需要 ----
|
| 19 |
-
pytorch-lightning
|
|
|
|
| 20 |
huggingface_hub
|
|
|
|
| 16 |
gradio>=4.0.0
|
| 17 |
|
| 18 |
# ---- LaMa inpainting 后续需要 ----
|
| 19 |
+
# pytorch-lightning
|
| 20 |
+
# omegaconf
|
| 21 |
huggingface_hub
|