Spaces:
Paused
Paused
fixed?
Browse files
app.py
CHANGED
|
@@ -7,7 +7,7 @@ from typing import Iterator
|
|
| 7 |
import gradio as gr
|
| 8 |
import spaces
|
| 9 |
import torch
|
| 10 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer,
|
| 11 |
|
| 12 |
DESCRIPTION = "# Mistral-7B"
|
| 13 |
|
|
@@ -21,8 +21,9 @@ MAX_INPUT_TOKEN_LENGTH = 4096
|
|
| 21 |
if torch.cuda.is_available():
|
| 22 |
model_id = "codys12/MergeLlama-7b"
|
| 23 |
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map=0, cache_dir="/data")
|
| 24 |
-
model.cuda()
|
| 25 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
|
|
|
|
|
|
| 26 |
|
| 27 |
|
| 28 |
@spaces.GPU
|
|
@@ -50,20 +51,25 @@ def generate(
|
|
| 50 |
input_ids = input_ids[-MAX_INPUT_TOKEN_LENGTH:]
|
| 51 |
gr.Warning("Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
|
| 52 |
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
|
| 64 |
-
|
| 65 |
-
for
|
| 66 |
-
|
|
|
|
| 67 |
|
| 68 |
|
| 69 |
chat_interface = gr.ChatInterface(
|
|
|
|
| 7 |
import gradio as gr
|
| 8 |
import spaces
|
| 9 |
import torch
|
| 10 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
|
| 11 |
|
| 12 |
DESCRIPTION = "# Mistral-7B"
|
| 13 |
|
|
|
|
| 21 |
if torch.cuda.is_available():
|
| 22 |
model_id = "codys12/MergeLlama-7b"
|
| 23 |
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map=0, cache_dir="/data")
|
|
|
|
| 24 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 25 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 26 |
+
tokenizer.padding_side = "right"
|
| 27 |
|
| 28 |
|
| 29 |
@spaces.GPU
|
|
|
|
| 51 |
input_ids = input_ids[-MAX_INPUT_TOKEN_LENGTH:]
|
| 52 |
gr.Warning("Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
|
| 53 |
|
| 54 |
+
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_special_tokens=True)
|
| 55 |
+
generate_kwargs = dict(
|
| 56 |
+
{"input_ids": input_ids},
|
| 57 |
+
streamer=streamer,
|
| 58 |
+
max_new_tokens=max_new_tokens,
|
| 59 |
+
do_sample=True,
|
| 60 |
+
top_p=top_p,
|
| 61 |
+
top_k=top_k,
|
| 62 |
+
temperature=temperature,
|
| 63 |
+
num_beams=1,
|
| 64 |
+
repetition_penalty=repetition_penalty,
|
| 65 |
+
)
|
| 66 |
+
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
| 67 |
+
t.start()
|
| 68 |
|
| 69 |
+
outputs = []
|
| 70 |
+
for text in streamer:
|
| 71 |
+
outputs.append(text)
|
| 72 |
+
yield "".join(outputs)
|
| 73 |
|
| 74 |
|
| 75 |
chat_interface = gr.ChatInterface(
|