root commited on
Commit
424a94c
1 Parent(s): 2d96aed

video-llama-2-test

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. LICENSE +28 -0
  2. LICENSE_Lavis.md +14 -0
  3. LICENSE_Minigpt4.md +14 -0
  4. README copy.md +244 -0
  5. README.md +249 -13
  6. Video-LLaMA-2-7B-Finetuned/AL_LLaMA_2_7B_Finetuned.pth +3 -0
  7. Video-LLaMA-2-7B-Finetuned/VL_LLaMA_2_7B_Finetuned.pth +3 -0
  8. Video-LLaMA-2-7B-Finetuned/imagebind_huge.pth +3 -0
  9. Video-LLaMA-2-7B-Finetuned/llama-2-7b-chat-hf/config.json +22 -0
  10. Video-LLaMA-2-7B-Finetuned/llama-2-7b-chat-hf/generation_config.json +7 -0
  11. Video-LLaMA-2-7B-Finetuned/llama-2-7b-chat-hf/pytorch_model-00001-of-00002.bin +3 -0
  12. Video-LLaMA-2-7B-Finetuned/llama-2-7b-chat-hf/pytorch_model-00002-of-00002.bin +3 -0
  13. Video-LLaMA-2-7B-Finetuned/llama-2-7b-chat-hf/pytorch_model.bin.index.json +330 -0
  14. Video-LLaMA-2-7B-Finetuned/llama-2-7b-chat-hf/special_tokens_map.json +23 -0
  15. Video-LLaMA-2-7B-Finetuned/llama-2-7b-chat-hf/tokenizer.json +0 -0
  16. Video-LLaMA-2-7B-Finetuned/llama-2-7b-chat-hf/tokenizer.model +3 -0
  17. Video-LLaMA-2-7B-Finetuned/llama-2-7b-chat-hf/tokenizer_config.json +33 -0
  18. app.py +237 -0
  19. apply_delta.py +49 -0
  20. demo_audiovideo.py +250 -0
  21. demo_video.py +247 -0
  22. environment.yml +70 -0
  23. eval_configs/video_llama_eval_only_vl.yaml +36 -0
  24. eval_configs/video_llama_eval_withaudio.yaml +35 -0
  25. figs/architecture.png +0 -0
  26. figs/architecture_v2.png +0 -0
  27. figs/video_llama_logo.jpg +0 -0
  28. prompts/alignment_image.txt +4 -0
  29. requirement.txt +13 -0
  30. setup.py +17 -0
  31. train.py +107 -0
  32. train_configs/audiobranch_stage1_pretrain.yaml +88 -0
  33. train_configs/audiobranch_stage2_finetune.yaml +120 -0
  34. train_configs/visionbranch_stage1_pretrain.yaml +87 -0
  35. train_configs/visionbranch_stage2_finetune.yaml +122 -0
  36. video_llama/__init__.py +31 -0
  37. video_llama/__pycache__/__init__.cpython-39.pyc +0 -0
  38. video_llama/common/__init__.py +0 -0
  39. video_llama/common/__pycache__/__init__.cpython-39.pyc +0 -0
  40. video_llama/common/__pycache__/config.cpython-39.pyc +0 -0
  41. video_llama/common/__pycache__/dist_utils.cpython-39.pyc +0 -0
  42. video_llama/common/__pycache__/logger.cpython-39.pyc +0 -0
  43. video_llama/common/__pycache__/registry.cpython-39.pyc +0 -0
  44. video_llama/common/__pycache__/utils.cpython-39.pyc +0 -0
  45. video_llama/common/config.py +468 -0
  46. video_llama/common/dist_utils.py +137 -0
  47. video_llama/common/gradcam.py +24 -0
  48. video_llama/common/logger.py +195 -0
  49. video_llama/common/optims.py +119 -0
  50. video_llama/common/registry.py +329 -0
LICENSE ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ BSD 3-Clause License
2
+
3
+ Copyright (c) 2023, Multilingual NLP Team at Alibaba DAMO Academy
4
+
5
+ Redistribution and use in source and binary forms, with or without
6
+ modification, are permitted provided that the following conditions are met:
7
+
8
+ 1. Redistributions of source code must retain the above copyright notice, this
9
+ list of conditions and the following disclaimer.
10
+
11
+ 2. Redistributions in binary form must reproduce the above copyright notice,
12
+ this list of conditions and the following disclaimer in the documentation
13
+ and/or other materials provided with the distribution.
14
+
15
+ 3. Neither the name of the copyright holder nor the names of its
16
+ contributors may be used to endorse or promote products derived from
17
+ this software without specific prior written permission.
18
+
19
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
20
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22
+ DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
23
+ FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24
+ DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
25
+ SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
26
+ CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
27
+ OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
LICENSE_Lavis.md ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ BSD 3-Clause License
2
+
3
+ Copyright (c) 2022 Salesforce, Inc.
4
+ All rights reserved.
5
+
6
+ Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
7
+
8
+ 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
9
+
10
+ 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
11
+
12
+ 3. Neither the name of Salesforce.com nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.
13
+
14
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
LICENSE_Minigpt4.md ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ BSD 3-Clause License
2
+
3
+ Copyright 2023 Deyao Zhu
4
+ All rights reserved.
5
+
6
+ Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
7
+
8
+ 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
9
+
10
+ 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
11
+
12
+ 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.
13
+
14
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
README copy.md ADDED
@@ -0,0 +1,244 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <p align="center" width="100%">
2
+ <a target="_blank"><img src="figs/video_llama_logo.jpg" alt="Video-LLaMA" style="width: 50%; min-width: 200px; display: block; margin: auto;"></a>
3
+ </p>
4
+
5
+
6
+
7
+ # Video-LLaMA: An Instruction-tuned Audio-Visual Language Model for Video Understanding
8
+ <!-- **Video-LLaMA: An Instruction-tuned Audio-Visual Language Model for Video Understanding** -->
9
+
10
+ This is the repo for the Video-LLaMA project, which is working on empowering large language models with video and audio understanding capabilities.
11
+
12
+ <div style='display:flex; gap: 0.25rem; '>
13
+ <a href='https://huggingface.co/spaces/DAMO-NLP-SG/Video-LLaMA'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Demo-blue'></a>
14
+ <a href='https://modelscope.cn/studios/damo/video-llama/summary'><img src='https://img.shields.io/badge/ModelScope-Demo-blueviolet'></a>
15
+ <a href='https://huggingface.co/DAMO-NLP-SG/Video-LLaMA-Series'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Model-blue'></a>
16
+ <a href='https://arxiv.org/abs/2306.02858'><img src='https://img.shields.io/badge/Paper-PDF-red'></a>
17
+ </div>
18
+
19
+ ## News
20
+ - [08.03] **NOTE**: Release the LLaMA-2-Chat version of **Video-LLaMA**, including its pre-trained and instruction-tuned checkpoints. We uploaded full weights on Huggingface ([7B-Pretrained](https://huggingface.co/DAMO-NLP-SG/Video-LLaMA-2-7B-Pretrained),[7B-Finetuned](https://huggingface.co/DAMO-NLP-SG/Video-LLaMA-2-7B-Finetuned),[13B-Pretrained](https://huggingface.co/DAMO-NLP-SG/Video-LLaMA-2-13B-Pretrained),[13B-Finetuned](https://huggingface.co/DAMO-NLP-SG/Video-LLaMA-2-13B-Finetuned)), just for your convenience and secondary development. Welcome to try.
21
+ - [06.14] **NOTE**: the current online interactive demo is primarily for English chatting and it may **NOT** be a good option to ask Chinese questions since Vicuna/LLaMA does not represent Chinese texts very well.
22
+ - [06.13] **NOTE**: the audio support is **ONLY** for Vicuna-7B by now although we have several VL checkpoints available for other decoders.
23
+ - [06.10] **NOTE**: we have NOT updated the HF demo yet because the whole framework (with audio branch) cannot run normally on A10-24G. The current running demo is still the previous version of Video-LLaMA. We will fix this issue soon.
24
+ - [06.08] 🚀🚀 Release the checkpoints of the audio-supported Video-LLaMA. Documentation and example outputs are also updated.
25
+ - [05.22] 🚀🚀 Interactive demo online, try our Video-LLaMA (with **Vicuna-7B** as language decoder) at [Hugging Face](https://huggingface.co/spaces/DAMO-NLP-SG/Video-LLaMA) and [ModelScope](https://pre.modelscope.cn/studios/damo/video-llama/summary)!!
26
+ - [05.22] ⭐️ Release **Video-LLaMA v2** built with Vicuna-7B
27
+ - [05.18] 🚀🚀 Support video-grounded chat in Chinese
28
+ - [**Video-LLaMA-BiLLA**](https://huggingface.co/DAMO-NLP-SG/Video-LLaMA-Series/resolve/main/finetune-billa7b-zh.pth): we introduce [BiLLa-7B](https://huggingface.co/Neutralzz/BiLLa-7B-SFT) as language decoder and fine-tune the video-language aligned model (i.e., stage 1 model) with machine-translated [VideoChat](https://github.com/OpenGVLab/InternVideo/tree/main/Data/instruction_data) instructions.
29
+ - [**Video-LLaMA-Ziya**](https://huggingface.co/DAMO-NLP-SG/Video-LLaMA-Series/resolve/main/finetune-ziya13b-zh.pth): same with Video-LLaMA-BiLLA but the language decoder is changed to [Ziya-13B](https://huggingface.co/IDEA-CCNL/Ziya-LLaMA-13B-v1).
30
+ - [05.18] ⭐️ Create a Hugging Face [repo](https://huggingface.co/DAMO-NLP-SG/Video-LLaMA-Series) to store the model weights of all the variants of our Video-LLaMA.
31
+ - [05.15] ⭐️ Release [**Video-LLaMA v2**](https://huggingface.co/DAMO-NLP-SG/Video-LLaMA-Series/resolve/main/finetune-vicuna13b-v2.pth): we use the training data provided by [VideoChat](https://github.com/OpenGVLab/InternVideo/tree/main/Data/instruction_data) to further enhance the instruction-following capability of Video-LLaMA.
32
+ - [05.07] Release the initial version of **Video-LLaMA**, including its pre-trained and instruction-tuned checkpoints.
33
+
34
+ <p align="center" width="100%">
35
+ <a target="_blank"><img src="figs/architecture_v2.png" alt="Video-LLaMA" style="width: 80%; min-width: 200px; display: block; margin: auto;"></a>
36
+ </p>
37
+
38
+ ## Introduction
39
+
40
+
41
+ - Video-LLaMA is built on top of [BLIP-2](https://github.com/salesforce/LAVIS/tree/main/projects/blip2) and [MiniGPT-4](https://github.com/Vision-CAIR/MiniGPT-4). It is composed of two core components: (1) Vision-Language (VL) Branch and (2) Audio-Language (AL) Branch.
42
+ - **VL Branch** (Visual encoder: ViT-G/14 + BLIP-2 Q-Former)
43
+ - A two-layer video Q-Former and a frame embedding layer (applied to the embeddings of each frame) are introduced to compute video representations.
44
+ - We train VL Branch on the Webvid-2M video caption dataset with a video-to-text generation task. We also add image-text pairs (~595K image captions from [LLaVA](https://github.com/haotian-liu/LLaVA)) into the pre-training dataset to enhance the understanding of static visual concepts.
45
+ - After pre-training, we further fine-tune our VL Branch using the instruction-tuning data from [MiniGPT-4](https://github.com/Vision-CAIR/MiniGPT-4), [LLaVA](https://github.com/haotian-liu/LLaVA) and [VideoChat](https://github.com/OpenGVLab/Ask-Anything).
46
+ - **AL Branch** (Audio encoder: ImageBind-Huge)
47
+ - A two-layer audio Q-Former and a audio segment embedding layer (applied to the embedding of each audio segment) are introduced to compute audio representations.
48
+ - As the used audio encoder (i.e., ImageBind) is already aligned across multiple modalities, we train AL Branch on video/image instrucaption data only, just to connect the output of ImageBind to language decoder.
49
+ - Note that only the Video/Audio Q-Former, positional embedding layers and the linear layers are trainable during cross-modal training.
50
+
51
+
52
+
53
+ ## Example Outputs
54
+
55
+
56
+ - **Video with background sound**
57
+
58
+ <p float="left">
59
+ <img src="https://github.com/DAMO-NLP-SG/Video-LLaMA/assets/18526640/7f7bddb2-5cf1-4cf4-bce3-3fa67974cbb3" style="width: 45%; margin: auto;">
60
+ <img src="https://github.com/DAMO-NLP-SG/Video-LLaMA/assets/18526640/ec76be04-4aa9-4dde-bff2-0a232b8315e0" style="width: 45%; margin: auto;">
61
+ </p>
62
+
63
+
64
+ - **Video without sound effects**
65
+ <p float="left">
66
+ <img src="https://github.com/DAMO-NLP-SG/Video-LLaMA/assets/18526640/539ea3cc-360d-4b2c-bf86-5505096df2f7" style="width: 45%; margin: auto;">
67
+ <img src="https://github.com/DAMO-NLP-SG/Video-LLaMA/assets/18526640/7304ad6f-1009-46f1-aca4-7f861b636363" style="width: 45%; margin: auto;">
68
+ </p>
69
+
70
+ - **Static image**
71
+ <p float="left">
72
+ <img src="https://github.com/DAMO-NLP-SG/Video-LLaMA/assets/18526640/a146c169-8693-4627-96e6-f885ca22791f" style="width: 45%; margin: auto;">
73
+ <img src="https://github.com/DAMO-NLP-SG/Video-LLaMA/assets/18526640/66fc112d-e47e-4b66-b9bc-407f8d418b17" style="width: 45%; margin: auto;">
74
+ </p>
75
+
76
+
77
+
78
+ ## Pre-trained & Fine-tuned Checkpoints
79
+
80
+ The following checkpoints store learnable parameters (positional embedding layers, Video/Audio Q-former and linear projection layers) only.
81
+
82
+ #### Vision-Language Branch
83
+ | Checkpoint | Link | Note |
84
+ |:------------|-------------|-------------|
85
+ | pretrain-vicuna7b | [link](https://huggingface.co/DAMO-NLP-SG/Video-LLaMA-Series/resolve/main/pretrain_vicuna7b-v2.pth) | Pre-trained on WebVid (2.5M video-caption pairs) and LLaVA-CC3M (595k image-caption pairs) |
86
+ | finetune-vicuna7b-v2 | [link](https://huggingface.co/DAMO-NLP-SG/Video-LLaMA-Series/resolve/main/finetune-vicuna7b-v2.pth) | Fine-tuned on the instruction-tuning data from [MiniGPT-4](https://github.com/Vision-CAIR/MiniGPT-4), [LLaVA](https://github.com/haotian-liu/LLaVA) and [VideoChat](https://github.com/OpenGVLab/Ask-Anything)|
87
+ | pretrain-vicuna13b | [link](https://huggingface.co/DAMO-NLP-SG/Video-LLaMA-Series/resolve/main/pretrain-vicuna13b.pth) | Pre-trained on WebVid (2.5M video-caption pairs) and LLaVA-CC3M (595k image-caption pairs) |
88
+ | finetune-vicuna13b-v2 | [link](https://huggingface.co/DAMO-NLP-SG/Video-LLaMA-Series/resolve/main/finetune-vicuna13b-v2.pth) | Fine-tuned on the instruction-tuning data from [MiniGPT-4](https://github.com/Vision-CAIR/MiniGPT-4), [LLaVA](https://github.com/haotian-liu/LLaVA) and [VideoChat](https://github.com/OpenGVLab/Ask-Anything)|
89
+ | pretrain-ziya13b-zh | [link](https://huggingface.co/DAMO-NLP-SG/Video-LLaMA-Series/resolve/main/pretrain-ziya13b-zh.pth) | Pre-trained with Chinese LLM [Ziya-13B](https://huggingface.co/IDEA-CCNL/Ziya-LLaMA-13B-v1) |
90
+ | finetune-ziya13b-zh | [link](https://huggingface.co/DAMO-NLP-SG/Video-LLaMA-Series/resolve/main/finetune-ziya13b-zh.pth) | Fine-tuned on machine-translated [VideoChat](https://github.com/OpenGVLab/Ask-Anything) instruction-following dataset (in Chinese)|
91
+ | pretrain-billa7b-zh | [link](https://huggingface.co/DAMO-NLP-SG/Video-LLaMA-Series/resolve/main/pretrain-billa7b-zh.pth) | Pre-trained with Chinese LLM [BiLLA-7B](https://huggingface.co/IDEA-CCNL/Ziya-LLaMA-13B-v1) |
92
+ | finetune-billa7b-zh | [link](https://huggingface.co/DAMO-NLP-SG/Video-LLaMA-Series/resolve/main/finetune-billa7b-zh.pth) | Fine-tuned on machine-translated [VideoChat](https://github.com/OpenGVLab/Ask-Anything) instruction-following dataset (in Chinese) |
93
+
94
+ #### Audio-Language Branch
95
+ | Checkpoint | Link | Note |
96
+ |:------------|-------------|-------------|
97
+ | pretrain-vicuna7b | [link](https://huggingface.co/DAMO-NLP-SG/Video-LLaMA-Series/resolve/main/pretrain_vicuna7b_audiobranch.pth) | Pre-trained on WebVid (2.5M video-caption pairs) and LLaVA-CC3M (595k image-caption pairs) |
98
+ | finetune-vicuna7b-v2 | [link](https://huggingface.co/DAMO-NLP-SG/Video-LLaMA-Series/resolve/main/finetune_vicuna7b_audiobranch.pth) | Fine-tuned on the instruction-tuning data from [MiniGPT-4](https://github.com/Vision-CAIR/MiniGPT-4), [LLaVA](https://github.com/haotian-liu/LLaVA) and [VideoChat](https://github.com/OpenGVLab/Ask-Anything)|
99
+
100
+
101
+ ## Usage
102
+ #### Enviroment Preparation
103
+
104
+ First, install ffmpeg.
105
+ ```
106
+ apt update
107
+ apt install ffmpeg
108
+ ```
109
+ Then, create a conda environment:
110
+ ```
111
+ conda env create -f environment.yml
112
+ conda activate videollama
113
+ ```
114
+
115
+
116
+ ## Prerequisites
117
+
118
+ Before using the repository, make sure you have obtained the following checkpoints:
119
+
120
+ #### Pre-trained Language Decoder
121
+
122
+ - Get the original LLaMA weights in the Hugging Face format by following the instructions [here](https://huggingface.co/docs/transformers/main/model_doc/llama).
123
+ - Download Vicuna delta weights :point_right: [[7B](https://huggingface.co/lmsys/vicuna-7b-delta-v0)][[13B](https://huggingface.co/lmsys/vicuna-13b-delta-v0)] (Note: we use **v0 weights** instead of v1.1 weights).
124
+ - Use the following command to add delta weights to the original LLaMA weights to obtain the Vicuna weights:
125
+
126
+ ```
127
+ python apply_delta.py \
128
+ --base /path/to/llama-13b \
129
+ --target /output/path/to/vicuna-13b --delta /path/to/vicuna-13b-delta
130
+ ```
131
+
132
+ #### Pre-trained Visual Encoder in Vision-Language Branch
133
+ - Download the MiniGPT-4 model (trained linear layer) from this [link](https://drive.google.com/file/d/1a4zLvaiDBr-36pasffmgpvH5P7CKmpze/view).
134
+
135
+ #### Pre-trained Audio Encoder in Audio-Language Branch
136
+ - Download the weight of ImageBind from this [link](https://github.com/facebookresearch/ImageBind).
137
+
138
+ ## Download Learnable Weights
139
+ Use `git-lfs` to download the learnable weights of our Video-LLaMA (i.e., positional embedding layer + Q-Former + linear projection layer):
140
+ ```bash
141
+ git lfs install
142
+ git clone https://huggingface.co/DAMO-NLP-SG/Video-LLaMA-Series
143
+ ```
144
+ The above commands will download the model weights of all the Video-LLaMA variants. For sure, you can choose to download the weights on demand. For example, if you want to run Video-LLaMA with Vicuna-7B as language decoder locally, then:
145
+ ```bash
146
+ wget https://huggingface.co/DAMO-NLP-SG/Video-LLaMA-Series/resolve/main/finetune-vicuna7b-v2.pth
147
+ wget https://huggingface.co/DAMO-NLP-SG/Video-LLaMA-Series/resolve/main/finetune_vicuna7b_audiobranch.pth
148
+ ```
149
+ should meet the requirement.
150
+
151
+ ## How to Run Demo Locally
152
+
153
+ Firstly, set the `llama_model`, `imagebind_ckpt_path`, `ckpt` and `ckpt_2` in [eval_configs/video_llama_eval_withaudio.yaml](./eval_configs/video_llama_eval_withaudio.yaml).
154
+ Then run the script:
155
+ ```
156
+ python demo_audiovideo.py \
157
+ --cfg-path eval_configs/video_llama_eval_withaudio.yaml --model_type vicuna --gpu-id 0
158
+ ```
159
+
160
+ ## Training
161
+
162
+ The training of each cross-modal branch (i.e., VL branch or AL branch) in Video-LLaMA consists of two stages,
163
+
164
+ 1. Pre-training on the [Webvid-2.5M](https://github.com/m-bain/webvid) video caption dataset and [LLaVA-CC3M]((https://github.com/haotian-liu/LLaVA)) image caption dataset.
165
+
166
+ 2. Fine-tuning using the image-based instruction-tuning data from [MiniGPT-4](https://github.com/Vision-CAIR/MiniGPT-4)/[LLaVA](https://github.com/haotian-liu/LLaVA) and the video-based instruction-tuning data from [VideoChat](https://github.com/OpenGVLab/Ask-Anything).
167
+
168
+ ### 1. Pre-training
169
+ #### Data Preparation
170
+ Download the metadata and video following the instruction from the official Github repo of [Webvid](https://github.com/m-bain/webvid).
171
+ The folder structure of the dataset is shown below:
172
+ ```
173
+ |webvid_train_data
174
+ |──filter_annotation
175
+ |────0.tsv
176
+ |──videos
177
+ |────000001_000050
178
+ |──────1066674784.mp4
179
+ ```
180
+ ```
181
+ |cc3m
182
+ |──filter_cap.json
183
+ |──image
184
+ |────GCC_train_000000000.jpg
185
+ |────...
186
+ ```
187
+ #### Script
188
+ Config the the checkpoint and dataset paths in [video_llama_stage1_pretrain.yaml](./train_configs/video_llama_stage1_pretrain.yaml).
189
+ Run the script:
190
+ ```
191
+ conda activate videollama
192
+ torchrun --nproc_per_node=8 train.py --cfg-path ./train_configs/video_llama_stage1_pretrain.yaml
193
+ ```
194
+
195
+ ### 2. Instruction Fine-tuning
196
+ #### Data
197
+ For now, the fine-tuning dataset consists of:
198
+ * 150K image-based instructions from LLaVA [[link](https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K/raw/main/llava_instruct_150k.json)]
199
+ * 3K image-based instructions from MiniGPT-4 [[link](https://github.com/Vision-CAIR/MiniGPT-4/blob/main/dataset/README_2_STAGE.md)]
200
+ * 11K video-based instructions from VideoChat [[link](https://github.com/OpenGVLab/InternVideo/tree/main/Data/instruction_data)]
201
+
202
+ #### Script
203
+ Config the checkpoint and dataset paths in [video_llama_stage2_finetune.yaml](./train_configs/video_llama_stage2_finetune.yaml).
204
+ ```
205
+ conda activate videollama
206
+ torchrun --nproc_per_node=8 train.py --cfg-path ./train_configs/video_llama_stage2_finetune.yaml
207
+ ```
208
+
209
+ ## Recommended GPUs
210
+ * Pre-training: 8xA100 (80G)
211
+ * Instruction-tuning: 8xA100 (80G)
212
+ * Inference: 1xA100 (40G/80G) or 1xA6000
213
+
214
+ ## Acknowledgement
215
+ We are grateful for the following awesome projects our Video-LLaMA arising from:
216
+ * [MiniGPT-4](https://github.com/Vision-CAIR/MiniGPT-4): Enhancing Vision-language Understanding with Advanced Large Language Models
217
+ * [FastChat](https://github.com/lm-sys/FastChat): An Open Platform for Training, Serving, and Evaluating Large Language Model based Chatbots
218
+ * [BLIP-2](https://github.com/salesforce/LAVIS/tree/main/projects/blip2): Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models
219
+ * [EVA-CLIP](https://github.com/baaivision/EVA/tree/master/EVA-CLIP): Improved Training Techniques for CLIP at Scale
220
+ * [ImageBind](https://github.com/facebookresearch/ImageBind): One Embedding Space To Bind Them All
221
+ * [LLaMA](https://github.com/facebookresearch/llama): Open and Efficient Foundation Language Models
222
+ * [VideoChat](https://github.com/OpenGVLab/Ask-Anything): Chat-Centric Video Understanding
223
+ * [LLaVA](https://github.com/haotian-liu/LLaVA): Large Language and Vision Assistant
224
+ * [WebVid](https://github.com/m-bain/webvid): A Large-scale Video-Text dataset
225
+ * [mPLUG-Owl](https://github.com/X-PLUG/mPLUG-Owl/tree/main): Modularization Empowers Large Language Models with Multimodality
226
+
227
+ The logo of Video-LLaMA is generated by [Midjourney](https://www.midjourney.com/).
228
+
229
+
230
+ ## Term of Use
231
+ Our Video-LLaMA is just a research preview intended for non-commercial use only. You must **NOT** use our Video-LLaMA for any illegal, harmful, violent, racist, or sexual purposes. You are strictly prohibited from engaging in any activity that will potentially violate these guidelines.
232
+
233
+ ## Citation
234
+ If you find our project useful, hope you can star our repo and cite our paper as follows:
235
+ ```
236
+ @article{damonlpsg2023videollama,
237
+ author = {Zhang, Hang and Li, Xin and Bing, Lidong},
238
+ title = {Video-LLaMA: An Instruction-tuned Audio-Visual Language Model for Video Understanding},
239
+ year = 2023,
240
+ journal = {arXiv preprint arXiv:2306.02858},
241
+ url = {https://arxiv.org/abs/2306.02858}
242
+ }
243
+ ```
244
+
README.md CHANGED
@@ -1,13 +1,249 @@
1
- ---
2
- title: Video Llama2 Test
3
- emoji: 👀
4
- colorFrom: gray
5
- colorTo: pink
6
- sdk: gradio
7
- sdk_version: 3.47.1
8
- app_file: app.py
9
- pinned: false
10
- license: bsd-3-clause
11
- ---
12
-
13
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <p align="center" width="100%">
2
+ <a target="_blank"><img src="figs/video_llama_logo.jpg" alt="Video-LLaMA" style="width: 50%; min-width: 200px; display: block; margin: auto;"></a>
3
+ </p>
4
+
5
+
6
+
7
+ # Video-LLaMA: An Instruction-tuned Audio-Visual Language Model for Video Understanding
8
+ <!-- **Video-LLaMA: An Instruction-tuned Audio-Visual Language Model for Video Understanding** -->
9
+
10
+ This is the repo for the Video-LLaMA project, which is working on empowering large language models with video and audio understanding capabilities.
11
+
12
+ <div style='display:flex; gap: 0.25rem; '>
13
+ <a href='https://modelscope.cn/studios/damo/video-llama/summary'><img src='https://img.shields.io/badge/ModelScope-Demo-blueviolet'></a>
14
+ <a href='https://www.modelscope.cn/models/damo/videollama_7b_llama2_finetuned/summary'><img src='https://img.shields.io/badge/ModelScope-Checkpoint-blueviolet'></a>
15
+ <a href='https://huggingface.co/spaces/DAMO-NLP-SG/Video-LLaMA'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Demo-blue'></a>
16
+ <a href='https://huggingface.co/DAMO-NLP-SG/Video-LLaMA-2-7B-Finetuned'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Checkpoint-blue'></a>
17
+ <a href='https://arxiv.org/abs/2306.02858'><img src='https://img.shields.io/badge/Paper-PDF-red'></a>
18
+ </div>
19
+
20
+ ## News
21
+ - [08.03] 🚀🚀 Release **Video-LLaMA-2** with [Llama-2-7B/13B-Chat](https://huggingface.co/meta-llama) as language decoder
22
+ - **NO** delta weights and separate Q-former weights anymore, full weights to run Video-LLaMA are all here :point_right: [[7B](https://huggingface.co/DAMO-NLP-SG/Video-LLaMA-2-7B-Finetuned)][[13B](https://huggingface.co/DAMO-NLP-SG/Video-LLaMA-2-13B-Finetuned)]
23
+ - Allow further customization starting from our pre-trained checkpoints [[7B-Pretrained](https://huggingface.co/DAMO-NLP-SG/Video-LLaMA-2-7B-Pretrained)] [[13B-Pretrained](https://huggingface.co/DAMO-NLP-SG/Video-LLaMA-2-13B-Pretrained)]
24
+ - [06.14] **NOTE**: The current online interactive demo is primarily for English chatting and it may **NOT** be a good option to ask Chinese questions since Vicuna/LLaMA does not represent Chinese texts very well.
25
+ - [06.13] **NOTE**: The audio support is **ONLY** for Vicuna-7B by now although we have several VL checkpoints available for other decoders.
26
+ - [06.10] **NOTE**: We have NOT updated the HF demo yet because the whole framework (with the audio branch) cannot run normally on A10-24G. The current running demo is still the previous version of Video-LLaMA. We will fix this issue soon.
27
+ - [06.08] 🚀🚀 Release the checkpoints of the audio-supported Video-LLaMA. Documentation and example outputs are also updated.
28
+ - [05.22] 🚀🚀 Interactive demo online, try our Video-LLaMA (with **Vicuna-7B** as language decoder) at [Hugging Face](https://huggingface.co/spaces/DAMO-NLP-SG/Video-LLaMA) and [ModelScope](https://pre.modelscope.cn/studios/damo/video-llama/summary)!!
29
+ - [05.22] ⭐️ Release **Video-LLaMA v2** built with Vicuna-7B
30
+ - [05.18] 🚀🚀 Support video-grounded chat in Chinese
31
+ - [**Video-LLaMA-BiLLA**](https://huggingface.co/DAMO-NLP-SG/Video-LLaMA-Series/resolve/main/finetune-billa7b-zh.pth): we introduce [BiLLa-7B-SFT](https://huggingface.co/Neutralzz/BiLLa-7B-SFT) as language decoder and fine-tune the video-language aligned model (i.e., stage 1 model) with machine-translated [VideoChat](https://github.com/OpenGVLab/InternVideo/tree/main/Data/instruction_data) instructions.
32
+ - [**Video-LLaMA-Ziya**](https://huggingface.co/DAMO-NLP-SG/Video-LLaMA-Series/resolve/main/finetune-ziya13b-zh.pth): same with Video-LLaMA-BiLLA but the language decoder is changed to [Ziya-13B](https://huggingface.co/IDEA-CCNL/Ziya-LLaMA-13B-v1).
33
+ - [05.18] ⭐️ Create a Hugging Face [repo](https://huggingface.co/DAMO-NLP-SG/Video-LLaMA-Series) to store the model weights of all the variants of our Video-LLaMA.
34
+ - [05.15] ⭐️ Release [**Video-LLaMA v2**](https://huggingface.co/DAMO-NLP-SG/Video-LLaMA-Series/resolve/main/finetune-vicuna13b-v2.pth): we use the training data provided by [VideoChat](https://github.com/OpenGVLab/InternVideo/tree/main/Data/instruction_data) to further enhance the instruction-following capability of Video-LLaMA.
35
+ - [05.07] Release the initial version of **Video-LLaMA**, including its pre-trained and instruction-tuned checkpoints.
36
+
37
+ <p align="center" width="100%">
38
+ <a target="_blank"><img src="figs/architecture_v2.png" alt="Video-LLaMA" style="width: 80%; min-width: 200px; display: block; margin: auto;"></a>
39
+ </p>
40
+
41
+ ## Introduction
42
+
43
+
44
+ - Video-LLaMA is built on top of [BLIP-2](https://github.com/salesforce/LAVIS/tree/main/projects/blip2) and [MiniGPT-4](https://github.com/Vision-CAIR/MiniGPT-4). It is composed of two core components: (1) Vision-Language (VL) Branch and (2) Audio-Language (AL) Branch.
45
+ - **VL Branch** (Visual encoder: ViT-G/14 + BLIP-2 Q-Former)
46
+ - A two-layer video Q-Former and a frame embedding layer (applied to the embeddings of each frame) are introduced to compute video representations.
47
+ - We train VL Branch on the Webvid-2M video caption dataset with a video-to-text generation task. We also add image-text pairs (~595K image captions from [LLaVA](https://github.com/haotian-liu/LLaVA)) into the pre-training dataset to enhance the understanding of static visual concepts.
48
+ - After pre-training, we further fine-tune our VL Branch using the instruction-tuning data from [MiniGPT-4](https://github.com/Vision-CAIR/MiniGPT-4), [LLaVA](https://github.com/haotian-liu/LLaVA) and [VideoChat](https://github.com/OpenGVLab/Ask-Anything).
49
+ - **AL Branch** (Audio encoder: ImageBind-Huge)
50
+ - A two-layer audio Q-Former and an audio segment embedding layer (applied to the embedding of each audio segment) are introduced to compute audio representations.
51
+ - As the used audio encoder (i.e., ImageBind) is already aligned across multiple modalities, we train AL Branch on video/image instruction data only, just to connect the output of ImageBind to the language decoder.
52
+ - Only the Video/Audio Q-Former, positional embedding layers, and linear layers are trainable during cross-modal training.
53
+
54
+
55
+
56
+ ## Example Outputs
57
+
58
+
59
+ - **Video with background sound**
60
+
61
+ <p float="left">
62
+ <img src="https://github.com/DAMO-NLP-SG/Video-LLaMA/assets/18526640/7f7bddb2-5cf1-4cf4-bce3-3fa67974cbb3" style="width: 45%; margin: auto;">
63
+ <img src="https://github.com/DAMO-NLP-SG/Video-LLaMA/assets/18526640/ec76be04-4aa9-4dde-bff2-0a232b8315e0" style="width: 45%; margin: auto;">
64
+ </p>
65
+
66
+
67
+ - **Video without sound effects**
68
+ <p float="left">
69
+ <img src="https://github.com/DAMO-NLP-SG/Video-LLaMA/assets/18526640/539ea3cc-360d-4b2c-bf86-5505096df2f7" style="width: 45%; margin: auto;">
70
+ <img src="https://github.com/DAMO-NLP-SG/Video-LLaMA/assets/18526640/7304ad6f-1009-46f1-aca4-7f861b636363" style="width: 45%; margin: auto;">
71
+ </p>
72
+
73
+ - **Static image**
74
+ <p float="left">
75
+ <img src="https://github.com/DAMO-NLP-SG/Video-LLaMA/assets/18526640/a146c169-8693-4627-96e6-f885ca22791f" style="width: 45%; margin: auto;">
76
+ <img src="https://github.com/DAMO-NLP-SG/Video-LLaMA/assets/18526640/66fc112d-e47e-4b66-b9bc-407f8d418b17" style="width: 45%; margin: auto;">
77
+ </p>
78
+
79
+
80
+
81
+ ## Pre-trained & Fine-tuned Checkpoints
82
+
83
+ The following checkpoints store learnable parameters (positional embedding layers, Video/Audio Q-former, and linear projection layers) only.
84
+
85
+ #### Vision-Language Branch
86
+ | Checkpoint | Link | Note |
87
+ |:------------|-------------|-------------|
88
+ | pretrain-vicuna7b | [link](https://huggingface.co/DAMO-NLP-SG/Video-LLaMA-Series/resolve/main/pretrain_vicuna7b-v2.pth) | Pre-trained on WebVid (2.5M video-caption pairs) and LLaVA-CC3M (595k image-caption pairs) |
89
+ | finetune-vicuna7b-v2 | [link](https://huggingface.co/DAMO-NLP-SG/Video-LLaMA-Series/resolve/main/finetune-vicuna7b-v2.pth) | Fine-tuned on the instruction-tuning data from [MiniGPT-4](https://github.com/Vision-CAIR/MiniGPT-4), [LLaVA](https://github.com/haotian-liu/LLaVA) and [VideoChat](https://github.com/OpenGVLab/Ask-Anything)|
90
+ | pretrain-vicuna13b | [link](https://huggingface.co/DAMO-NLP-SG/Video-LLaMA-Series/resolve/main/pretrain-vicuna13b.pth) | Pre-trained on WebVid (2.5M video-caption pairs) and LLaVA-CC3M (595k image-caption pairs) |
91
+ | finetune-vicuna13b-v2 | [link](https://huggingface.co/DAMO-NLP-SG/Video-LLaMA-Series/resolve/main/finetune-vicuna13b-v2.pth) | Fine-tuned on the instruction-tuning data from [MiniGPT-4](https://github.com/Vision-CAIR/MiniGPT-4), [LLaVA](https://github.com/haotian-liu/LLaVA) and [VideoChat](https://github.com/OpenGVLab/Ask-Anything)|
92
+ | pretrain-ziya13b-zh | [link](https://huggingface.co/DAMO-NLP-SG/Video-LLaMA-Series/resolve/main/pretrain-ziya13b-zh.pth) | Pre-trained with Chinese LLM [Ziya-13B](https://huggingface.co/IDEA-CCNL/Ziya-LLaMA-13B-v1) |
93
+ | finetune-ziya13b-zh | [link](https://huggingface.co/DAMO-NLP-SG/Video-LLaMA-Series/resolve/main/finetune-ziya13b-zh.pth) | Fine-tuned on machine-translated [VideoChat](https://github.com/OpenGVLab/Ask-Anything) instruction-following dataset (in Chinese)|
94
+ | pretrain-billa7b-zh | [link](https://huggingface.co/DAMO-NLP-SG/Video-LLaMA-Series/resolve/main/pretrain-billa7b-zh.pth) | Pre-trained with Chinese LLM [BiLLA-7B-SFT](https://huggingface.co/Neutralzz/BiLLa-7B-SFT) |
95
+ | finetune-billa7b-zh | [link](https://huggingface.co/DAMO-NLP-SG/Video-LLaMA-Series/resolve/main/finetune-billa7b-zh.pth) | Fine-tuned on machine-translated [VideoChat](https://github.com/OpenGVLab/Ask-Anything) instruction-following dataset (in Chinese) |
96
+
97
+ #### Audio-Language Branch
98
+ | Checkpoint | Link | Note |
99
+ |:------------|-------------|-------------|
100
+ | pretrain-vicuna7b | [link](https://huggingface.co/DAMO-NLP-SG/Video-LLaMA-Series/resolve/main/pretrain_vicuna7b_audiobranch.pth) | Pre-trained on WebVid (2.5M video-caption pairs) and LLaVA-CC3M (595k image-caption pairs) |
101
+ | finetune-vicuna7b-v2 | [link](https://huggingface.co/DAMO-NLP-SG/Video-LLaMA-Series/resolve/main/finetune_vicuna7b_audiobranch.pth) | Fine-tuned on the instruction-tuning data from [MiniGPT-4](https://github.com/Vision-CAIR/MiniGPT-4), [LLaVA](https://github.com/haotian-liu/LLaVA) and [VideoChat](https://github.com/OpenGVLab/Ask-Anything)|
102
+
103
+
104
+ ## Usage
105
+ #### Enviroment Preparation
106
+
107
+ First, install ffmpeg.
108
+ ```
109
+ apt update
110
+ apt install ffmpeg
111
+ ```
112
+ Then, create a conda environment:
113
+ ```
114
+ conda env create -f environment.yml
115
+ conda activate videollama
116
+ ```
117
+
118
+
119
+ ## Prerequisites
120
+
121
+ Before using the repository, make sure you have obtained the following checkpoints:
122
+
123
+ #### Pre-trained Language Decoder
124
+
125
+ - Get the original LLaMA weights in the Hugging Face format by following the instructions [here](https://huggingface.co/docs/transformers/main/model_doc/llama).
126
+ - Download Vicuna delta weights :point_right: [[7B](https://huggingface.co/lmsys/vicuna-7b-delta-v0)][[13B](https://huggingface.co/lmsys/vicuna-13b-delta-v0)] (Note: we use **v0 weights** instead of v1.1 weights).
127
+ - Use the following command to add delta weights to the original LLaMA weights to obtain the Vicuna weights:
128
+
129
+ ```
130
+ python apply_delta.py \
131
+ --base /path/to/llama-13b \
132
+ --target /output/path/to/vicuna-13b --delta /path/to/vicuna-13b-delta
133
+ ```
134
+
135
+ #### Pre-trained Visual Encoder in Vision-Language Branch
136
+ - Download the MiniGPT-4 model (trained linear layer) from this [link](https://drive.google.com/file/d/1a4zLvaiDBr-36pasffmgpvH5P7CKmpze/view).
137
+
138
+ #### Pre-trained Audio Encoder in Audio-Language Branch
139
+ - Download the weight of ImageBind from this [link](https://github.com/facebookresearch/ImageBind).
140
+
141
+ ## Download Learnable Weights
142
+ Use `git-lfs` to download the learnable weights of our Video-LLaMA (i.e., positional embedding layer + Q-Former + linear projection layer):
143
+ ```bash
144
+ git lfs install
145
+ git clone https://huggingface.co/DAMO-NLP-SG/Video-LLaMA-Series
146
+ ```
147
+ The above commands will download the model weights of all the Video-LLaMA variants. For sure, you can choose to download the weights on demand. For example, if you want to run Video-LLaMA with Vicuna-7B as language decoder locally, then:
148
+ ```bash
149
+ wget https://huggingface.co/DAMO-NLP-SG/Video-LLaMA-Series/resolve/main/finetune-vicuna7b-v2.pth
150
+ wget https://huggingface.co/DAMO-NLP-SG/Video-LLaMA-Series/resolve/main/finetune_vicuna7b_audiobranch.pth
151
+ ```
152
+ should meet the requirement.
153
+
154
+ ## How to Run Demo Locally
155
+
156
+ Firstly, set the `llama_model`, `imagebind_ckpt_path`, `ckpt` and `ckpt_2` in [eval_configs/video_llama_eval_withaudio.yaml](./eval_configs/video_llama_eval_withaudio.yaml).
157
+ Then run the script:
158
+ ```
159
+ python demo_audiovideo.py \
160
+ --cfg-path eval_configs/video_llama_eval_withaudio.yaml \
161
+ --model_type llama_v2 \ # or vicuna
162
+ --gpu-id 0
163
+ ```
164
+
165
+ ## Training
166
+
167
+ The training of each cross-modal branch (i.e., VL branch or AL branch) in Video-LLaMA consists of two stages,
168
+
169
+ 1. Pre-training on the [Webvid-2.5M](https://github.com/m-bain/webvid) video caption dataset and [LLaVA-CC3M]((https://github.com/haotian-liu/LLaVA)) image caption dataset.
170
+
171
+ 2. Fine-tuning using the image-based instruction-tuning data from [MiniGPT-4](https://github.com/Vision-CAIR/MiniGPT-4)/[LLaVA](https://github.com/haotian-liu/LLaVA) and the video-based instruction-tuning data from [VideoChat](https://github.com/OpenGVLab/Ask-Anything).
172
+
173
+ ### 1. Pre-training
174
+ #### Data Preparation
175
+ Download the metadata and video following the instructions from the official Github repo of [Webvid](https://github.com/m-bain/webvid).
176
+ The folder structure of the dataset is shown below:
177
+ ```
178
+ |webvid_train_data
179
+ |──filter_annotation
180
+ |────0.tsv
181
+ |──videos
182
+ |────000001_000050
183
+ |──────1066674784.mp4
184
+ ```
185
+ ```
186
+ |cc3m
187
+ |──filter_cap.json
188
+ |──image
189
+ |────GCC_train_000000000.jpg
190
+ |────...
191
+ ```
192
+ #### Script
193
+ Config the the checkpoint and dataset paths in [video_llama_stage1_pretrain.yaml](./train_configs/video_llama_stage1_pretrain.yaml).
194
+ Run the script:
195
+ ```
196
+ conda activate videollama
197
+ torchrun --nproc_per_node=8 train.py --cfg-path ./train_configs/video_llama_stage1_pretrain.yaml
198
+ ```
199
+
200
+ ### 2. Instruction Fine-tuning
201
+ #### Data
202
+ For now, the fine-tuning dataset consists of:
203
+ * 150K image-based instructions from LLaVA [[link](https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K/raw/main/llava_instruct_150k.json)]
204
+ * 3K image-based instructions from MiniGPT-4 [[link](https://github.com/Vision-CAIR/MiniGPT-4/blob/main/dataset/README_2_STAGE.md)]
205
+ * 11K video-based instructions from VideoChat [[link](https://github.com/OpenGVLab/InternVideo/tree/main/Data/instruction_data)]
206
+
207
+ #### Script
208
+ Config the checkpoint and dataset paths in [video_llama_stage2_finetune.yaml](./train_configs/video_llama_stage2_finetune.yaml).
209
+ ```
210
+ conda activate videollama
211
+ torchrun --nproc_per_node=8 train.py --cfg-path ./train_configs/video_llama_stage2_finetune.yaml
212
+ ```
213
+
214
+ ## Recommended GPUs
215
+ * Pre-training: 8xA100 (80G)
216
+ * Instruction-tuning: 8xA100 (80G)
217
+ * Inference: 1xA100 (40G/80G) or 1xA6000
218
+
219
+ ## Acknowledgement
220
+ We are grateful for the following awesome projects our Video-LLaMA arising from:
221
+ * [MiniGPT-4](https://github.com/Vision-CAIR/MiniGPT-4): Enhancing Vision-language Understanding with Advanced Large Language Models
222
+ * [FastChat](https://github.com/lm-sys/FastChat): An Open Platform for Training, Serving, and Evaluating Large Language Model based Chatbots
223
+ * [BLIP-2](https://github.com/salesforce/LAVIS/tree/main/projects/blip2): Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models
224
+ * [EVA-CLIP](https://github.com/baaivision/EVA/tree/master/EVA-CLIP): Improved Training Techniques for CLIP at Scale
225
+ * [ImageBind](https://github.com/facebookresearch/ImageBind): One Embedding Space To Bind Them All
226
+ * [LLaMA](https://github.com/facebookresearch/llama): Open and Efficient Foundation Language Models
227
+ * [VideoChat](https://github.com/OpenGVLab/Ask-Anything): Chat-Centric Video Understanding
228
+ * [LLaVA](https://github.com/haotian-liu/LLaVA): Large Language and Vision Assistant
229
+ * [WebVid](https://github.com/m-bain/webvid): A Large-scale Video-Text dataset
230
+ * [mPLUG-Owl](https://github.com/X-PLUG/mPLUG-Owl/tree/main): Modularization Empowers Large Language Models with Multimodality
231
+
232
+ The logo of Video-LLaMA is generated by [Midjourney](https://www.midjourney.com/).
233
+
234
+
235
+ ## Term of Use
236
+ Our Video-LLaMA is just a research preview intended for non-commercial use only. You must **NOT** use our Video-LLaMA for any illegal, harmful, violent, racist, or sexual purposes. You are strictly prohibited from engaging in any activity that will potentially violate these guidelines.
237
+
238
+ ## Citation
239
+ If you find our project useful, hope you can star our repo and cite our paper as follows:
240
+ ```
241
+ @article{damonlpsg2023videollama,
242
+ author = {Zhang, Hang and Li, Xin and Bing, Lidong},
243
+ title = {Video-LLaMA: An Instruction-tuned Audio-Visual Language Model for Video Understanding},
244
+ year = 2023,
245
+ journal = {arXiv preprint arXiv:2306.02858},
246
+ url = {https://arxiv.org/abs/2306.02858}
247
+ }
248
+ ```
249
+
Video-LLaMA-2-7B-Finetuned/AL_LLaMA_2_7B_Finetuned.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1ad66d3e0eb9eaef5392e7b67c4689166f5610088c92652b9ecdae332b8d5b6f
3
+ size 274578657
Video-LLaMA-2-7B-Finetuned/VL_LLaMA_2_7B_Finetuned.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3cec0e2979ed7656e08ecc5b185c2229a3c577b4b7a4721a94bd461ba0447c6e
3
+ size 265559201
Video-LLaMA-2-7B-Finetuned/imagebind_huge.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d6f6c22bedcc90708448d5d2fbb7b2db9c73f505dc89bd0b2e09b23af1b62157
3
+ size 4803584173
Video-LLaMA-2-7B-Finetuned/llama-2-7b-chat-hf/config.json ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "LlamaForCausalLM"
4
+ ],
5
+ "bos_token_id": 1,
6
+ "eos_token_id": 2,
7
+ "hidden_act": "silu",
8
+ "hidden_size": 4096,
9
+ "initializer_range": 0.02,
10
+ "intermediate_size": 11008,
11
+ "max_position_embeddings": 2048,
12
+ "model_type": "llama",
13
+ "num_attention_heads": 32,
14
+ "num_hidden_layers": 32,
15
+ "pad_token_id": 0,
16
+ "rms_norm_eps": 1e-06,
17
+ "tie_word_embeddings": false,
18
+ "torch_dtype": "float16",
19
+ "transformers_version": "4.29.0.dev0",
20
+ "use_cache": true,
21
+ "vocab_size": 32000
22
+ }
Video-LLaMA-2-7B-Finetuned/llama-2-7b-chat-hf/generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "pad_token_id": 0,
6
+ "transformers_version": "4.29.0.dev0"
7
+ }
Video-LLaMA-2-7B-Finetuned/llama-2-7b-chat-hf/pytorch_model-00001-of-00002.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8f917a253ef631128743798d284a7e7a5a22ac1ad23ecd6a9da57550348317f5
3
+ size 9976634558
Video-LLaMA-2-7B-Finetuned/llama-2-7b-chat-hf/pytorch_model-00002-of-00002.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8e8fc22b2c138439c6bafb7331ac139585e683005407e016feb18a4feea18417
3
+ size 3500315539
Video-LLaMA-2-7B-Finetuned/llama-2-7b-chat-hf/pytorch_model.bin.index.json ADDED
@@ -0,0 +1,330 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 13476839424
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "pytorch_model-00002-of-00002.bin",
7
+ "model.embed_tokens.weight": "pytorch_model-00001-of-00002.bin",
8
+ "model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
9
+ "model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
10
+ "model.layers.0.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
11
+ "model.layers.0.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
12
+ "model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
13
+ "model.layers.0.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
14
+ "model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
15
+ "model.layers.0.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
16
+ "model.layers.0.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
17
+ "model.layers.0.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
18
+ "model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
19
+ "model.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
20
+ "model.layers.1.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
21
+ "model.layers.1.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
22
+ "model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
23
+ "model.layers.1.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
24
+ "model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
25
+ "model.layers.1.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
26
+ "model.layers.1.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
27
+ "model.layers.1.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
28
+ "model.layers.10.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
29
+ "model.layers.10.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
30
+ "model.layers.10.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
31
+ "model.layers.10.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
32
+ "model.layers.10.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
33
+ "model.layers.10.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
34
+ "model.layers.10.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
35
+ "model.layers.10.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
36
+ "model.layers.10.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
37
+ "model.layers.10.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
38
+ "model.layers.11.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
39
+ "model.layers.11.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
40
+ "model.layers.11.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
41
+ "model.layers.11.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
42
+ "model.layers.11.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
43
+ "model.layers.11.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
44
+ "model.layers.11.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
45
+ "model.layers.11.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
46
+ "model.layers.11.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
47
+ "model.layers.11.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
48
+ "model.layers.12.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
49
+ "model.layers.12.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
50
+ "model.layers.12.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
51
+ "model.layers.12.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
52
+ "model.layers.12.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
53
+ "model.layers.12.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
54
+ "model.layers.12.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
55
+ "model.layers.12.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
56
+ "model.layers.12.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
57
+ "model.layers.12.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
58
+ "model.layers.13.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
59
+ "model.layers.13.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
60
+ "model.layers.13.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
61
+ "model.layers.13.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
62
+ "model.layers.13.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
63
+ "model.layers.13.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
64
+ "model.layers.13.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
65
+ "model.layers.13.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
66
+ "model.layers.13.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
67
+ "model.layers.13.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
68
+ "model.layers.14.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
69
+ "model.layers.14.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
70
+ "model.layers.14.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
71
+ "model.layers.14.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
72
+ "model.layers.14.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
73
+ "model.layers.14.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
74
+ "model.layers.14.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
75
+ "model.layers.14.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
76
+ "model.layers.14.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
77
+ "model.layers.14.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
78
+ "model.layers.15.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
79
+ "model.layers.15.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
80
+ "model.layers.15.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
81
+ "model.layers.15.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
82
+ "model.layers.15.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
83
+ "model.layers.15.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
84
+ "model.layers.15.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
85
+ "model.layers.15.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
86
+ "model.layers.15.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
87
+ "model.layers.15.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
88
+ "model.layers.16.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
89
+ "model.layers.16.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
90
+ "model.layers.16.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
91
+ "model.layers.16.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
92
+ "model.layers.16.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
93
+ "model.layers.16.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
94
+ "model.layers.16.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
95
+ "model.layers.16.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
96
+ "model.layers.16.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
97
+ "model.layers.16.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
98
+ "model.layers.17.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
99
+ "model.layers.17.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
100
+ "model.layers.17.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
101
+ "model.layers.17.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
102
+ "model.layers.17.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
103
+ "model.layers.17.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
104
+ "model.layers.17.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
105
+ "model.layers.17.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
106
+ "model.layers.17.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
107
+ "model.layers.17.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
108
+ "model.layers.18.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
109
+ "model.layers.18.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
110
+ "model.layers.18.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
111
+ "model.layers.18.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
112
+ "model.layers.18.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
113
+ "model.layers.18.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
114
+ "model.layers.18.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
115
+ "model.layers.18.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
116
+ "model.layers.18.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
117
+ "model.layers.18.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
118
+ "model.layers.19.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
119
+ "model.layers.19.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
120
+ "model.layers.19.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
121
+ "model.layers.19.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
122
+ "model.layers.19.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
123
+ "model.layers.19.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
124
+ "model.layers.19.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
125
+ "model.layers.19.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
126
+ "model.layers.19.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
127
+ "model.layers.19.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
128
+ "model.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
129
+ "model.layers.2.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
130
+ "model.layers.2.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
131
+ "model.layers.2.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
132
+ "model.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
133
+ "model.layers.2.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
134
+ "model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
135
+ "model.layers.2.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
136
+ "model.layers.2.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
137
+ "model.layers.2.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
138
+ "model.layers.20.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
139
+ "model.layers.20.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
140
+ "model.layers.20.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
141
+ "model.layers.20.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
142
+ "model.layers.20.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
143
+ "model.layers.20.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
144
+ "model.layers.20.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
145
+ "model.layers.20.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
146
+ "model.layers.20.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
147
+ "model.layers.20.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
148
+ "model.layers.21.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
149
+ "model.layers.21.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
150
+ "model.layers.21.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
151
+ "model.layers.21.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
152
+ "model.layers.21.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
153
+ "model.layers.21.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
154
+ "model.layers.21.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
155
+ "model.layers.21.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
156
+ "model.layers.21.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
157
+ "model.layers.21.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
158
+ "model.layers.22.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
159
+ "model.layers.22.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
160
+ "model.layers.22.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
161
+ "model.layers.22.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
162
+ "model.layers.22.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
163
+ "model.layers.22.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
164
+ "model.layers.22.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
165
+ "model.layers.22.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
166
+ "model.layers.22.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
167
+ "model.layers.22.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
168
+ "model.layers.23.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
169
+ "model.layers.23.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
170
+ "model.layers.23.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
171
+ "model.layers.23.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
172
+ "model.layers.23.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
173
+ "model.layers.23.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
174
+ "model.layers.23.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
175
+ "model.layers.23.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
176
+ "model.layers.23.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
177
+ "model.layers.23.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
178
+ "model.layers.24.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
179
+ "model.layers.24.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
180
+ "model.layers.24.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
181
+ "model.layers.24.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
182
+ "model.layers.24.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
183
+ "model.layers.24.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
184
+ "model.layers.24.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
185
+ "model.layers.24.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
186
+ "model.layers.24.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
187
+ "model.layers.24.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
188
+ "model.layers.25.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
189
+ "model.layers.25.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
190
+ "model.layers.25.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
191
+ "model.layers.25.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
192
+ "model.layers.25.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
193
+ "model.layers.25.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
194
+ "model.layers.25.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
195
+ "model.layers.25.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
196
+ "model.layers.25.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
197
+ "model.layers.25.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
198
+ "model.layers.26.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
199
+ "model.layers.26.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
200
+ "model.layers.26.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
201
+ "model.layers.26.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
202
+ "model.layers.26.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
203
+ "model.layers.26.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
204
+ "model.layers.26.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
205
+ "model.layers.26.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
206
+ "model.layers.26.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
207
+ "model.layers.26.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
208
+ "model.layers.27.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
209
+ "model.layers.27.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
210
+ "model.layers.27.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
211
+ "model.layers.27.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
212
+ "model.layers.27.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
213
+ "model.layers.27.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
214
+ "model.layers.27.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
215
+ "model.layers.27.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
216
+ "model.layers.27.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
217
+ "model.layers.27.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
218
+ "model.layers.28.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
219
+ "model.layers.28.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
220
+ "model.layers.28.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
221
+ "model.layers.28.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
222
+ "model.layers.28.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
223
+ "model.layers.28.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
224
+ "model.layers.28.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
225
+ "model.layers.28.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
226
+ "model.layers.28.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
227
+ "model.layers.28.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
228
+ "model.layers.29.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
229
+ "model.layers.29.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
230
+ "model.layers.29.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
231
+ "model.layers.29.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
232
+ "model.layers.29.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
233
+ "model.layers.29.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
234
+ "model.layers.29.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
235
+ "model.layers.29.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
236
+ "model.layers.29.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
237
+ "model.layers.29.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
238
+ "model.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
239
+ "model.layers.3.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
240
+ "model.layers.3.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
241
+ "model.layers.3.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
242
+ "model.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
243
+ "model.layers.3.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
244
+ "model.layers.3.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
245
+ "model.layers.3.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
246
+ "model.layers.3.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
247
+ "model.layers.3.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
248
+ "model.layers.30.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
249
+ "model.layers.30.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
250
+ "model.layers.30.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
251
+ "model.layers.30.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
252
+ "model.layers.30.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
253
+ "model.layers.30.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
254
+ "model.layers.30.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
255
+ "model.layers.30.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
256
+ "model.layers.30.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
257
+ "model.layers.30.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
258
+ "model.layers.31.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
259
+ "model.layers.31.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
260
+ "model.layers.31.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
261
+ "model.layers.31.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
262
+ "model.layers.31.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
263
+ "model.layers.31.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
264
+ "model.layers.31.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
265
+ "model.layers.31.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
266
+ "model.layers.31.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
267
+ "model.layers.31.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
268
+ "model.layers.4.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
269
+ "model.layers.4.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
270
+ "model.layers.4.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
271
+ "model.layers.4.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
272
+ "model.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
273
+ "model.layers.4.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
274
+ "model.layers.4.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
275
+ "model.layers.4.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
276
+ "model.layers.4.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
277
+ "model.layers.4.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
278
+ "model.layers.5.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
279
+ "model.layers.5.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
280
+ "model.layers.5.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
281
+ "model.layers.5.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
282
+ "model.layers.5.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
283
+ "model.layers.5.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
284
+ "model.layers.5.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
285
+ "model.layers.5.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
286
+ "model.layers.5.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
287
+ "model.layers.5.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
288
+ "model.layers.6.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
289
+ "model.layers.6.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
290
+ "model.layers.6.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
291
+ "model.layers.6.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
292
+ "model.layers.6.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
293
+ "model.layers.6.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
294
+ "model.layers.6.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
295
+ "model.layers.6.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
296
+ "model.layers.6.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
297
+ "model.layers.6.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
298
+ "model.layers.7.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
299
+ "model.layers.7.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
300
+ "model.layers.7.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
301
+ "model.layers.7.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
302
+ "model.layers.7.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
303
+ "model.layers.7.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
304
+ "model.layers.7.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
305
+ "model.layers.7.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
306
+ "model.layers.7.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
307
+ "model.layers.7.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
308
+ "model.layers.8.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
309
+ "model.layers.8.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
310
+ "model.layers.8.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
311
+ "model.layers.8.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
312
+ "model.layers.8.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
313
+ "model.layers.8.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
314
+ "model.layers.8.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
315
+ "model.layers.8.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
316
+ "model.layers.8.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
317
+ "model.layers.8.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
318
+ "model.layers.9.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
319
+ "model.layers.9.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
320
+ "model.layers.9.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
321
+ "model.layers.9.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
322
+ "model.layers.9.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
323
+ "model.layers.9.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
324
+ "model.layers.9.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
325
+ "model.layers.9.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
326
+ "model.layers.9.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
327
+ "model.layers.9.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
328
+ "model.norm.weight": "pytorch_model-00002-of-00002.bin"
329
+ }
330
+ }
Video-LLaMA-2-7B-Finetuned/llama-2-7b-chat-hf/special_tokens_map.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "unk_token": {
17
+ "content": "<unk>",
18
+ "lstrip": false,
19
+ "normalized": true,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ }
23
+ }
Video-LLaMA-2-7B-Finetuned/llama-2-7b-chat-hf/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
Video-LLaMA-2-7B-Finetuned/llama-2-7b-chat-hf/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
Video-LLaMA-2-7B-Finetuned/llama-2-7b-chat-hf/tokenizer_config.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "bos_token": {
5
+ "__type": "AddedToken",
6
+ "content": "<s>",
7
+ "lstrip": false,
8
+ "normalized": true,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "clean_up_tokenization_spaces": false,
13
+ "eos_token": {
14
+ "__type": "AddedToken",
15
+ "content": "</s>",
16
+ "lstrip": false,
17
+ "normalized": true,
18
+ "rstrip": false,
19
+ "single_word": false
20
+ },
21
+ "model_max_length": 1000000000000000019884624838656,
22
+ "pad_token": null,
23
+ "sp_model_kwargs": {},
24
+ "tokenizer_class": "LlamaTokenizer",
25
+ "unk_token": {
26
+ "__type": "AddedToken",
27
+ "content": "<unk>",
28
+ "lstrip": false,
29
+ "normalized": true,
30
+ "rstrip": false,
31
+ "single_word": false
32
+ }
33
+ }
app.py ADDED
@@ -0,0 +1,237 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Adapted from: https://github.com/Vision-CAIR/MiniGPT-4/blob/main/demo.py
3
+ """
4
+ import argparse
5
+ import os
6
+ import random
7
+
8
+ import numpy as np
9
+ import torch
10
+ import torch.backends.cudnn as cudnn
11
+ import gradio as gr
12
+
13
+ from video_llama.common.config import Config
14
+ from video_llama.common.dist_utils import get_rank
15
+ from video_llama.common.registry import registry
16
+ from video_llama.conversation.conversation_video import Chat, Conversation, default_conversation,SeparatorStyle,conv_llava_llama_2
17
+ import decord
18
+ decord.bridge.set_bridge('torch')
19
+
20
+ #%%
21
+ # imports modules for registration
22
+ from video_llama.datasets.builders import *
23
+ from video_llama.models import *
24
+ from video_llama.processors import *
25
+ from video_llama.runners import *
26
+ from video_llama.tasks import *
27
+
28
+ #%%
29
+ def parse_args():
30
+ parser = argparse.ArgumentParser(description="Demo")
31
+ parser.add_argument("--cfg-path", default='eval_configs/video_llama_eval_withaudio.yaml', help="path to configuration file.")
32
+ parser.add_argument("--gpu-id", type=int, default=0, help="specify the gpu to load the model.")
33
+ parser.add_argument("--model_type", type=str, default='vicuna', help="The type of LLM")
34
+ parser.add_argument(
35
+ "--options",
36
+ nargs="+",
37
+ help="override some settings in the used config, the key-value pair "
38
+ "in xxx=yyy format will be merged into config file (deprecate), "
39
+ "change to --cfg-options instead.",
40
+ )
41
+ args = parser.parse_args()
42
+ return args
43
+
44
+
45
+ def setup_seeds(config):
46
+ seed = config.run_cfg.seed + get_rank()
47
+
48
+ random.seed(seed)
49
+ np.random.seed(seed)
50
+ torch.manual_seed(seed)
51
+
52
+ cudnn.benchmark = False
53
+ cudnn.deterministic = True
54
+
55
+
56
+ # ========================================
57
+ # Model Initialization
58
+ # ========================================
59
+
60
+ print('Initializing Chat')
61
+ args = parse_args()
62
+ cfg = Config(args)
63
+
64
+ model_config = cfg.model_cfg
65
+ model_config.device_8bit = args.gpu_id
66
+ model_cls = registry.get_model_class(model_config.arch)
67
+ model = model_cls.from_config(model_config).to('cuda:{}'.format(args.gpu_id))
68
+ model.eval()
69
+ vis_processor_cfg = cfg.datasets_cfg.webvid.vis_processor.train
70
+ vis_processor = registry.get_processor_class(vis_processor_cfg.name).from_config(vis_processor_cfg)
71
+ chat = Chat(model, vis_processor, device='cuda:{}'.format(args.gpu_id))
72
+ print('Initialization Finished')
73
+
74
+ # ========================================
75
+ # Gradio Setting
76
+ # ========================================
77
+
78
+ def gradio_reset(chat_state, img_list):
79
+ if chat_state is not None:
80
+ chat_state.messages = []
81
+ if img_list is not None:
82
+ img_list = []
83
+ return None, gr.update(value=None, interactive=True), gr.update(value=None, interactive=True), gr.update(placeholder='Please upload your video first', interactive=False),gr.update(value="Upload & Start Chat", interactive=True), chat_state, img_list
84
+
85
+ def upload_imgorvideo(gr_video, gr_img, text_input, chat_state,chatbot,audio_flag):
86
+ if args.model_type == 'vicuna':
87
+ chat_state = default_conversation.copy()
88
+ else:
89
+ chat_state = conv_llava_llama_2.copy()
90
+ if gr_img is None and gr_video is None:
91
+ return None, None, None, gr.update(interactive=True), chat_state, None
92
+ elif gr_img is not None and gr_video is None:
93
+ print(gr_img)
94
+ chatbot = chatbot + [((gr_img,), None)]
95
+ chat_state.system = "You are able to understand the visual content that the user provides. Follow the instructions carefully and explain your answers in detail."
96
+ img_list = []
97
+ llm_message = chat.upload_img(gr_img, chat_state, img_list)
98
+ return gr.update(interactive=False), gr.update(interactive=False), gr.update(interactive=True, placeholder='Type and press Enter'), gr.update(value="Start Chatting", interactive=False), chat_state, img_list,chatbot
99
+ elif gr_video is not None and gr_img is None:
100
+ print(gr_video)
101
+ chatbot = chatbot + [((gr_video,), None)]
102
+ chat_state.system = ""
103
+ img_list = []
104
+ if audio_flag:
105
+ llm_message = chat.upload_video(gr_video, chat_state, img_list)
106
+ else:
107
+ llm_message = chat.upload_video_without_audio(gr_video, chat_state, img_list)
108
+ return gr.update(interactive=False), gr.update(interactive=False), gr.update(interactive=True, placeholder='Type and press Enter'), gr.update(value="Start Chatting", interactive=False), chat_state, img_list,chatbot
109
+ else:
110
+ # img_list = []
111
+ return gr.update(interactive=False), gr.update(interactive=False, placeholder='Currently, only one input is supported'), gr.update(value="Currently, only one input is supported", interactive=False), chat_state, None,chatbot
112
+
113
+ def gradio_ask(user_message, chatbot, chat_state):
114
+ if len(user_message) == 0:
115
+ return gr.update(interactive=True, placeholder='Input should not be empty!'), chatbot, chat_state
116
+ chat.ask(user_message, chat_state)
117
+ chatbot = chatbot + [[user_message, None]]
118
+ return '', chatbot, chat_state
119
+
120
+
121
+ def gradio_answer(chatbot, chat_state, img_list, num_beams, temperature):
122
+ llm_message = chat.answer(conv=chat_state,
123
+ img_list=img_list,
124
+ num_beams=num_beams,
125
+ temperature=temperature,
126
+ max_new_tokens=300,
127
+ max_length=2000)[0]
128
+ chatbot[-1][1] = llm_message
129
+ print(chat_state.get_prompt())
130
+ print(chat_state)
131
+ return chatbot, chat_state, img_list
132
+
133
+ title = """
134
+ <h1 align="center"><a href="https://github.com/DAMO-NLP-SG/Video-LLaMA"><img src="https://s1.ax1x.com/2023/05/22/p9oQ0FP.jpg", alt="Video-LLaMA" border="0" style="margin: 0 auto; height: 200px;" /></a> </h1>
135
+
136
+ <h1 align="center">Video-LLaMA: An Instruction-tuned Audio-Visual Language Model for Video Understanding</h1>
137
+
138
+ <h5 align="center"> Introduction: Video-LLaMA is a multi-model large language model that achieves video-grounded conversations between humans and computers \
139
+ by connecting language decoder with off-the-shelf unimodal pre-trained models. </h5>
140
+
141
+ <div style='display:flex; gap: 0.25rem; '>
142
+ <a href='https://github.com/DAMO-NLP-SG/Video-LLaMA'><img src='https://img.shields.io/badge/Github-Code-success'></a>
143
+ <a href='https://huggingface.co/spaces/DAMO-NLP-SG/Video-LLaMA'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue'></a>
144
+ <a href='https://huggingface.co/DAMO-NLP-SG/Video-LLaMA-Series'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Model-blue'></a>
145
+ <a href='https://modelscope.cn/studios/damo/video-llama/summary'><img src='https://img.shields.io/badge/ModelScope-Demo-blueviolet'></a>
146
+ <a href='https://arxiv.org/abs/2306.02858'><img src='https://img.shields.io/badge/Paper-PDF-red'></a>
147
+ </div>
148
+
149
+
150
+ Thank you for using the Video-LLaMA Demo Page! If you have any questions or feedback, feel free to contact us.
151
+
152
+ If you find Video-LLaMA interesting, please give us a star on GitHub.
153
+
154
+ Current online demo uses the 7B version of Video-LLaMA due to resource limitations. We have released \
155
+ the 13B version on our GitHub repository.
156
+
157
+
158
+ """
159
+
160
+ Note_markdown = ("""
161
+ ### Note
162
+ Video-LLaMA is a prototype model and may have limitations in understanding complex scenes, long videos, or specific domains.
163
+ The output results may be influenced by input quality, limitations of the dataset, and the model's susceptibility to illusions. Please interpret the results with caution.
164
+
165
+ **Copyright 2023 Alibaba DAMO Academy.**
166
+ """)
167
+
168
+ cite_markdown = ("""
169
+ ## Citation
170
+ If you find our project useful, hope you can star our repo and cite our paper as follows:
171
+ ```
172
+ @article{damonlpsg2023videollama,
173
+ author = {Zhang, Hang and Li, Xin and Bing, Lidong},
174
+ title = {Video-LLaMA: An Instruction-tuned Audio-Visual Language Model for Video Understanding},
175
+ year = 2023,
176
+ journal = {arXiv preprint arXiv:2306.02858}
177
+ url = {https://arxiv.org/abs/2306.02858}
178
+ }
179
+ """)
180
+
181
+ case_note_upload = ("""
182
+ ### We provide some examples at the bottom of the page. Simply click on them to try them out directly.
183
+ """)
184
+
185
+ #TODO show examples below
186
+
187
+ with gr.Blocks() as demo:
188
+ gr.Markdown(title)
189
+
190
+ with gr.Row():
191
+ with gr.Column(scale=0.5):
192
+ video = gr.Video()
193
+ image = gr.Image(type="filepath")
194
+ gr.Markdown(case_note_upload)
195
+
196
+ upload_button = gr.Button(value="Upload & Start Chat", interactive=True, variant="primary")
197
+ clear = gr.Button("Restart")
198
+
199
+ num_beams = gr.Slider(
200
+ minimum=1,
201
+ maximum=10,
202
+ value=1,
203
+ step=1,
204
+ interactive=True,
205
+ label="beam search numbers)",
206
+ )
207
+
208
+ temperature = gr.Slider(
209
+ minimum=0.1,
210
+ maximum=2.0,
211
+ value=1.0,
212
+ step=0.1,
213
+ interactive=True,
214
+ label="Temperature",
215
+ )
216
+
217
+ audio = gr.Checkbox(interactive=True, value=False, label="Audio")
218
+ gr.Markdown(Note_markdown)
219
+ with gr.Column():
220
+ chat_state = gr.State()
221
+ img_list = gr.State()
222
+ chatbot = gr.Chatbot(label='Video-LLaMA')
223
+ text_input = gr.Textbox(label='User', placeholder='Upload your image/video first, or directly click the examples at the bottom of the page.', interactive=False)
224
+
225
+
226
+ gr.Markdown(cite_markdown)
227
+ upload_button.click(upload_imgorvideo, [video, image, text_input, chat_state,chatbot,audio], [video, image, text_input, upload_button, chat_state, img_list,chatbot])
228
+
229
+ text_input.submit(gradio_ask, [text_input, chatbot, chat_state], [text_input, chatbot, chat_state]).then(
230
+ gradio_answer, [chatbot, chat_state, img_list, num_beams, temperature], [chatbot, chat_state, img_list]
231
+ )
232
+ clear.click(gradio_reset, [chat_state, img_list], [chatbot, video, image, text_input, upload_button, chat_state, img_list], queue=False)
233
+
234
+ demo.launch(share=False, enable_queue=True)
235
+
236
+
237
+ # %%
apply_delta.py ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Apply the delta weights on top of a base model.
3
+ Adapted from: https://github.com/lm-sys/FastChat/blob/main/fastchat/model/apply_delta.py.
4
+ """
5
+ import argparse
6
+
7
+ import torch
8
+ from tqdm import tqdm
9
+ from transformers import AutoTokenizer, AutoModelForCausalLM
10
+
11
+
12
+ def apply_delta(base_model_path, target_model_path, delta_path):
13
+ print(f"Loading the base model from {base_model_path}")
14
+ base = AutoModelForCausalLM.from_pretrained(
15
+ base_model_path, torch_dtype=torch.float16, low_cpu_mem_usage=True)
16
+
17
+ print(f"Loading the delta from {delta_path}")
18
+ delta = AutoModelForCausalLM.from_pretrained(delta_path, torch_dtype=torch.float16, low_cpu_mem_usage=True)
19
+ delta_tokenizer = AutoTokenizer.from_pretrained(delta_path, use_fast=False)
20
+
21
+ DEFAULT_PAD_TOKEN = "[PAD]"
22
+ base_tokenizer = AutoTokenizer.from_pretrained(base_model_path, use_fast=False)
23
+ num_new_tokens = base_tokenizer.add_special_tokens(dict(pad_token=DEFAULT_PAD_TOKEN))
24
+
25
+ base.resize_token_embeddings(len(base_tokenizer))
26
+ input_embeddings = base.get_input_embeddings().weight.data
27
+ output_embeddings = base.get_output_embeddings().weight.data
28
+ input_embeddings[-num_new_tokens:] = 0
29
+ output_embeddings[-num_new_tokens:] = 0
30
+
31
+ print("Applying the delta")
32
+ for name, param in tqdm(base.state_dict().items(), desc="Applying delta"):
33
+ assert name in delta.state_dict()
34
+ param.data += delta.state_dict()[name]
35
+
36
+ print(f"Saving the target model to {target_model_path}")
37
+ base.save_pretrained(target_model_path)
38
+ delta_tokenizer.save_pretrained(target_model_path)
39
+
40
+
41
+ if __name__ == "__main__":
42
+ parser = argparse.ArgumentParser()
43
+ parser.add_argument("--base-model-path", type=str, required=True)
44
+ parser.add_argument("--target-model-path", type=str, required=True)
45
+ parser.add_argument("--delta-path", type=str, required=True)
46
+
47
+ args = parser.parse_args()
48
+
49
+ apply_delta(args.base_model_path, args.target_model_path, args.delta_path)
demo_audiovideo.py ADDED
@@ -0,0 +1,250 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Adapted from: https://github.com/Vision-CAIR/MiniGPT-4/blob/main/demo.py
3
+ """
4
+ import argparse
5
+ import os
6
+ import random
7
+
8
+ import numpy as np
9
+ import torch
10
+ import torch.backends.cudnn as cudnn
11
+ import gradio as gr
12
+
13
+ from video_llama.common.config import Config
14
+ from video_llama.common.dist_utils import get_rank
15
+ from video_llama.common.registry import registry
16
+ from video_llama.conversation.conversation_video import Chat, Conversation, default_conversation,SeparatorStyle,conv_llava_llama_2
17
+ import decord
18
+ decord.bridge.set_bridge('torch')
19
+
20
+ #%%
21
+ # imports modules for registration
22
+ from video_llama.datasets.builders import *
23
+ from video_llama.models import *
24
+ from video_llama.processors import *
25
+ from video_llama.runners import *
26
+ from video_llama.tasks import *
27
+
28
+ #%%
29
+ def parse_args():
30
+ parser = argparse.ArgumentParser(description="Demo")
31
+ parser.add_argument("--cfg-path", default='eval_configs/video_llama_eval_withaudio.yaml', help="path to configuration file.")
32
+ parser.add_argument("--gpu-id", type=int, default=0, help="specify the gpu to load the model.")
33
+ parser.add_argument("--model_type", type=str, default='vicuna', help="The type of LLM")
34
+ parser.add_argument(
35
+ "--options",
36
+ nargs="+",
37
+ help="override some settings in the used config, the key-value pair "
38
+ "in xxx=yyy format will be merged into config file (deprecate), "
39
+ "change to --cfg-options instead.",
40
+ )
41
+ args = parser.parse_args()
42
+ return args
43
+
44
+
45
+ def setup_seeds(config):
46
+ seed = config.run_cfg.seed + get_rank()
47
+
48
+ random.seed(seed)
49
+ np.random.seed(seed)
50
+ torch.manual_seed(seed)
51
+
52
+ cudnn.benchmark = False
53
+ cudnn.deterministic = True
54
+
55
+
56
+ # ========================================
57
+ # Model Initialization
58
+ # ========================================
59
+
60
+ print('Initializing Chat')
61
+ args = parse_args()
62
+ cfg = Config(args)
63
+
64
+ model_config = cfg.model_cfg
65
+ model_config.device_8bit = args.gpu_id
66
+ model_cls = registry.get_model_class(model_config.arch)
67
+ model = model_cls.from_config(model_config).to('cuda:{}'.format(args.gpu_id))
68
+ model.eval()
69
+ vis_processor_cfg = cfg.datasets_cfg.webvid.vis_processor.train
70
+ vis_processor = registry.get_processor_class(vis_processor_cfg.name).from_config(vis_processor_cfg)
71
+ chat = Chat(model, vis_processor, device='cuda:{}'.format(args.gpu_id))
72
+ print('Initialization Finished')
73
+
74
+ # ========================================
75
+ # Gradio Setting
76
+ # ========================================
77
+
78
+ def gradio_reset(chat_state, img_list):
79
+ if chat_state is not None:
80
+ chat_state.messages = []
81
+ if img_list is not None:
82
+ img_list = []
83
+ return None, gr.update(value=None, interactive=True), gr.update(value=None, interactive=True), gr.update(placeholder='Please upload your video first', interactive=False),gr.update(value="Upload & Start Chat", interactive=True), chat_state, img_list
84
+
85
+ def upload_imgorvideo(gr_video, gr_img, text_input, chat_state,chatbot,audio_flag):
86
+ if args.model_type == 'vicuna':
87
+ chat_state = default_conversation.copy()
88
+ else:
89
+ chat_state = conv_llava_llama_2.copy()
90
+ if gr_img is None and gr_video is None:
91
+ return None, None, None, gr.update(interactive=True), chat_state, None
92
+ elif gr_img is not None and gr_video is None:
93
+ print(gr_img)
94
+ chatbot = chatbot + [((gr_img,), None)]
95
+ chat_state.system = "You are able to understand the visual content that the user provides. Follow the instructions carefully and explain your answers in detail."
96
+ img_list = []
97
+ llm_message = chat.upload_img(gr_img, chat_state, img_list)
98
+ return gr.update(interactive=False), gr.update(interactive=False), gr.update(interactive=True, placeholder='Type and press Enter'), gr.update(value="Start Chatting", interactive=False), chat_state, img_list,chatbot
99
+ elif gr_video is not None and gr_img is None:
100
+ print(gr_video)
101
+ chatbot = chatbot + [((gr_video,), None)]
102
+ chat_state.system = ""
103
+ img_list = []
104
+ if audio_flag:
105
+ llm_message = chat.upload_video(gr_video, chat_state, img_list)
106
+ else:
107
+ llm_message = chat.upload_video_without_audio(gr_video, chat_state, img_list)
108
+ return gr.update(interactive=False), gr.update(interactive=False), gr.update(interactive=True, placeholder='Type and press Enter'), gr.update(value="Start Chatting", interactive=False), chat_state, img_list,chatbot
109
+ else:
110
+ # img_list = []
111
+ return gr.update(interactive=False), gr.update(interactive=False, placeholder='Currently, only one input is supported'), gr.update(value="Currently, only one input is supported", interactive=False), chat_state, None,chatbot
112
+
113
+ def gradio_ask(user_message, chatbot, chat_state):
114
+ if len(user_message) == 0:
115
+ return gr.update(interactive=True, placeholder='Input should not be empty!'), chatbot, chat_state
116
+ chat.ask(user_message, chat_state)
117
+ chatbot = chatbot + [[user_message, None]]
118
+ return '', chatbot, chat_state
119
+
120
+
121
+ def gradio_answer(chatbot, chat_state, img_list, num_beams, temperature):
122
+ llm_message = chat.answer(conv=chat_state,
123
+ img_list=img_list,
124
+ num_beams=num_beams,
125
+ temperature=temperature,
126
+ max_new_tokens=300,
127
+ max_length=2000)[0]
128
+ chatbot[-1][1] = llm_message
129
+ print(chat_state.get_prompt())
130
+ print(chat_state)
131
+ return chatbot, chat_state, img_list
132
+
133
+ title = """
134
+ <h1 align="center"><a href="https://github.com/DAMO-NLP-SG/Video-LLaMA"><img src="https://s1.ax1x.com/2023/05/22/p9oQ0FP.jpg", alt="Video-LLaMA" border="0" style="margin: 0 auto; height: 200px;" /></a> </h1>
135
+
136
+ <h1 align="center">Video-LLaMA: An Instruction-tuned Audio-Visual Language Model for Video Understanding</h1>
137
+
138
+ <h5 align="center"> Introduction: Video-LLaMA is a multi-model large language model that achieves video-grounded conversations between humans and computers \
139
+ by connecting language decoder with off-the-shelf unimodal pre-trained models. </h5>
140
+
141
+ <div style='display:flex; gap: 0.25rem; '>
142
+ <a href='https://github.com/DAMO-NLP-SG/Video-LLaMA'><img src='https://img.shields.io/badge/Github-Code-success'></a>
143
+ <a href='https://huggingface.co/spaces/DAMO-NLP-SG/Video-LLaMA'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue'></a>
144
+ <a href='https://huggingface.co/DAMO-NLP-SG/Video-LLaMA-Series'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Model-blue'></a>
145
+ <a href='https://modelscope.cn/studios/damo/video-llama/summary'><img src='https://img.shields.io/badge/ModelScope-Demo-blueviolet'></a>
146
+ <a href='https://arxiv.org/abs/2306.02858'><img src='https://img.shields.io/badge/Paper-PDF-red'></a>
147
+ </div>
148
+
149
+
150
+ Thank you for using the Video-LLaMA Demo Page! If you have any questions or feedback, feel free to contact us.
151
+
152
+ If you find Video-LLaMA interesting, please give us a star on GitHub.
153
+
154
+ Current online demo uses the 7B version of Video-LLaMA due to resource limitations. We have released \
155
+ the 13B version on our GitHub repository.
156
+
157
+
158
+ """
159
+
160
+ Note_markdown = ("""
161
+ ### Note
162
+ Video-LLaMA is a prototype model and may have limitations in understanding complex scenes, long videos, or specific domains.
163
+ The output results may be influenced by input quality, limitations of the dataset, and the model's susceptibility to illusions. Please interpret the results with caution.
164
+
165
+ **Copyright 2023 Alibaba DAMO Academy.**
166
+ """)
167
+
168
+ cite_markdown = ("""
169
+ ## Citation
170
+ If you find our project useful, hope you can star our repo and cite our paper as follows:
171
+ ```
172
+ @article{damonlpsg2023videollama,
173
+ author = {Zhang, Hang and Li, Xin and Bing, Lidong},
174
+ title = {Video-LLaMA: An Instruction-tuned Audio-Visual Language Model for Video Understanding},
175
+ year = 2023,
176
+ journal = {arXiv preprint arXiv:2306.02858}
177
+ url = {https://arxiv.org/abs/2306.02858}
178
+ }
179
+ """)
180
+
181
+ case_note_upload = ("""
182
+ ### We provide some examples at the bottom of the page. Simply click on them to try them out directly.
183
+ """)
184
+
185
+ #TODO show examples below
186
+
187
+ with gr.Blocks() as demo:
188
+ gr.Markdown(title)
189
+
190
+ with gr.Row():
191
+ with gr.Column(scale=0.5):
192
+ video = gr.Video()
193
+ image = gr.Image(type="filepath")
194
+ gr.Markdown(case_note_upload)
195
+
196
+ upload_button = gr.Button(value="Upload & Start Chat", interactive=True, variant="primary")
197
+ clear = gr.Button("Restart")
198
+
199
+ num_beams = gr.Slider(
200
+ minimum=1,
201
+ maximum=10,
202
+ value=1,
203
+ step=1,
204
+ interactive=True,
205
+ label="beam search numbers)",
206
+ )
207
+
208
+ temperature = gr.Slider(
209
+ minimum=0.1,
210
+ maximum=2.0,
211
+ value=1.0,
212
+ step=0.1,
213
+ interactive=True,
214
+ label="Temperature",
215
+ )
216
+
217
+ audio = gr.Checkbox(interactive=True, value=False, label="Audio")
218
+ gr.Markdown(Note_markdown)
219
+ with gr.Column():
220
+ chat_state = gr.State()
221
+ img_list = gr.State()
222
+ chatbot = gr.Chatbot(label='Video-LLaMA')
223
+ text_input = gr.Textbox(label='User', placeholder='Upload your image/video first, or directly click the examples at the bottom of the page.', interactive=False)
224
+
225
+
226
+ with gr.Column():
227
+ gr.Examples(examples=[
228
+ [f"examples/dog.jpg", "Which breed is this dog? "],
229
+ [f"examples/JonSnow.jpg", "Who's the man on the right? "],
230
+ [f"examples/Statue_of_Liberty.jpg", "Can you tell me about this building? "],
231
+ ], inputs=[image, text_input])
232
+
233
+ gr.Examples(examples=[
234
+ [f"examples/skateboarding_dog.mp4", "What is the dog doing? "],
235
+ [f"examples/birthday.mp4", "What is the boy doing? "],
236
+ [f"examples/IronMan.mp4", "Is the guy in the video Iron Man? "],
237
+ ], inputs=[video, text_input])
238
+
239
+ gr.Markdown(cite_markdown)
240
+ upload_button.click(upload_imgorvideo, [video, image, text_input, chat_state,chatbot,audio], [video, image, text_input, upload_button, chat_state, img_list,chatbot])
241
+
242
+ text_input.submit(gradio_ask, [text_input, chatbot, chat_state], [text_input, chatbot, chat_state]).then(
243
+ gradio_answer, [chatbot, chat_state, img_list, num_beams, temperature], [chatbot, chat_state, img_list]
244
+ )
245
+ clear.click(gradio_reset, [chat_state, img_list], [chatbot, video, image, text_input, upload_button, chat_state, img_list], queue=False)
246
+
247
+ demo.launch(share=False, enable_queue=True)
248
+
249
+
250
+ # %%
demo_video.py ADDED
@@ -0,0 +1,247 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Adapted from: https://github.com/Vision-CAIR/MiniGPT-4/blob/main/demo.py
3
+ """
4
+ import argparse
5
+ import os
6
+ import random
7
+
8
+ import numpy as np
9
+ import torch
10
+ import torch.backends.cudnn as cudnn
11
+ import gradio as gr
12
+
13
+ from video_llama.common.config import Config
14
+ from video_llama.common.dist_utils import get_rank
15
+ from video_llama.common.registry import registry
16
+ from video_llama.conversation.conversation_video import Chat, Conversation, default_conversation,SeparatorStyle,conv_llava_llama_2
17
+ import decord
18
+ decord.bridge.set_bridge('torch')
19
+
20
+ #%%
21
+ # imports modules for registration
22
+ from video_llama.datasets.builders import *
23
+ from video_llama.models import *
24
+ from video_llama.processors import *
25
+ from video_llama.runners import *
26
+ from video_llama.tasks import *
27
+
28
+ #%%
29
+ def parse_args():
30
+ parser = argparse.ArgumentParser(description="Demo")
31
+ parser.add_argument("--cfg-path", required=True, help="path to configuration file.")
32
+ parser.add_argument("--gpu-id", type=int, default=0, help="specify the gpu to load the model.")
33
+ parser.add_argument("--model_type", type=str, default='vicuna', help="The type of LLM")
34
+ parser.add_argument(
35
+ "--options",
36
+ nargs="+",
37
+ help="override some settings in the used config, the key-value pair "
38
+ "in xxx=yyy format will be merged into config file (deprecate), "
39
+ "change to --cfg-options instead.",
40
+ )
41
+ args = parser.parse_args()
42
+ return args
43
+
44
+
45
+ def setup_seeds(config):
46
+ seed = config.run_cfg.seed + get_rank()
47
+
48
+ random.seed(seed)
49
+ np.random.seed(seed)
50
+ torch.manual_seed(seed)
51
+
52
+ cudnn.benchmark = False
53
+ cudnn.deterministic = True
54
+
55
+
56
+ # ========================================
57
+ # Model Initialization
58
+ # ========================================
59
+
60
+ print('Initializing Chat')
61
+ args = parse_args()
62
+ cfg = Config(args)
63
+
64
+ model_config = cfg.model_cfg
65
+ model_config.device_8bit = args.gpu_id
66
+ model_cls = registry.get_model_class(model_config.arch)
67
+ model = model_cls.from_config(model_config).to('cuda:{}'.format(args.gpu_id))
68
+ model.eval()
69
+ vis_processor_cfg = cfg.datasets_cfg.webvid.vis_processor.train
70
+ vis_processor = registry.get_processor_class(vis_processor_cfg.name).from_config(vis_processor_cfg)
71
+ chat = Chat(model, vis_processor, device='cuda:{}'.format(args.gpu_id))
72
+ print('Initialization Finished')
73
+
74
+ # ========================================
75
+ # Gradio Setting
76
+ # ========================================
77
+
78
+ def gradio_reset(chat_state, img_list):
79
+ if chat_state is not None:
80
+ chat_state.messages = []
81
+ if img_list is not None:
82
+ img_list = []
83
+ return None, gr.update(value=None, interactive=True), gr.update(value=None, interactive=True), gr.update(placeholder='Please upload your video first', interactive=False),gr.update(value="Upload & Start Chat", interactive=True), chat_state, img_list
84
+
85
+ def upload_imgorvideo(gr_video, gr_img, text_input, chat_state,chatbot):
86
+ if args.model_type == 'vicuna':
87
+ chat_state = default_conversation.copy()
88
+ else:
89
+ chat_state = conv_llava_llama_2.copy()
90
+ if gr_img is None and gr_video is None:
91
+ return None, None, None, gr.update(interactive=True), chat_state, None
92
+ elif gr_img is not None and gr_video is None:
93
+ print(gr_img)
94
+ chatbot = chatbot + [((gr_img,), None)]
95
+ chat_state.system = "You are able to understand the visual content that the user provides. Follow the instructions carefully and explain your answers in detail."
96
+ img_list = []
97
+ llm_message = chat.upload_img(gr_img, chat_state, img_list)
98
+ return gr.update(interactive=False), gr.update(interactive=False), gr.update(interactive=True, placeholder='Type and press Enter'), gr.update(value="Start Chatting", interactive=False), chat_state, img_list,chatbot
99
+ elif gr_video is not None and gr_img is None:
100
+ print(gr_video)
101
+ chatbot = chatbot + [((gr_video,), None)]
102
+ chat_state.system = "You are able to understand the visual content that the user provides. Follow the instructions carefully and explain your answers in detail."
103
+ img_list = []
104
+ llm_message = chat.upload_video_without_audio(gr_video, chat_state, img_list)
105
+ return gr.update(interactive=False), gr.update(interactive=False), gr.update(interactive=True, placeholder='Type and press Enter'), gr.update(value="Start Chatting", interactive=False), chat_state, img_list,chatbot
106
+ else:
107
+ # img_list = []
108
+ return gr.update(interactive=False), gr.update(interactive=False, placeholder='Currently, only one input is supported'), gr.update(value="Currently, only one input is supported", interactive=False), chat_state, None,chatbot
109
+
110
+ def gradio_ask(user_message, chatbot, chat_state):
111
+ if len(user_message) == 0:
112
+ return gr.update(interactive=True, placeholder='Input should not be empty!'), chatbot, chat_state
113
+ chat.ask(user_message, chat_state)
114
+ chatbot = chatbot + [[user_message, None]]
115
+ return '', chatbot, chat_state
116
+
117
+
118
+ def gradio_answer(chatbot, chat_state, img_list, num_beams, temperature):
119
+ llm_message = chat.answer(conv=chat_state,
120
+ img_list=img_list,
121
+ num_beams=num_beams,
122
+ temperature=temperature,
123
+ max_new_tokens=300,
124
+ max_length=2000)[0]
125
+ chatbot[-1][1] = llm_message
126
+ print(chat_state.get_prompt())
127
+ print(chat_state)
128
+ return chatbot, chat_state, img_list
129
+
130
+ title = """
131
+ <h1 align="center"><a href="https://github.com/DAMO-NLP-SG/Video-LLaMA"><img src="https://s1.ax1x.com/2023/05/22/p9oQ0FP.jpg", alt="Video-LLaMA" border="0" style="margin: 0 auto; height: 200px;" /></a> </h1>
132
+
133
+ <h1 align="center">Video-LLaMA: An Instruction-tuned Audio-Visual Language Model for Video Understanding</h1>
134
+
135
+ <h5 align="center"> Introduction: Video-LLaMA is a multi-model large language model that achieves video-grounded conversations between humans and computers \
136
+ by connecting language decoder with off-the-shelf unimodal pre-trained models. </h5>
137
+
138
+ <div style='display:flex; gap: 0.25rem; '>
139
+ <a href='https://github.com/DAMO-NLP-SG/Video-LLaMA'><img src='https://img.shields.io/badge/Github-Code-success'></a>
140
+ <a href='https://huggingface.co/spaces/DAMO-NLP-SG/Video-LLaMA'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue'></a>
141
+ <a href='https://huggingface.co/DAMO-NLP-SG/Video-LLaMA-Series'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Model-blue'></a>
142
+ <a href='https://modelscope.cn/studios/damo/video-llama/summary'><img src='https://img.shields.io/badge/ModelScope-Demo-blueviolet'></a>
143
+ <a href='https://arxiv.org/abs/2306.02858'><img src='https://img.shields.io/badge/Paper-PDF-red'></a>
144
+ </div>
145
+
146
+
147
+ Thank you for using the Video-LLaMA Demo Page! If you have any questions or feedback, feel free to contact us.
148
+
149
+ If you find Video-LLaMA interesting, please give us a star on GitHub.
150
+
151
+ Current online demo uses the 7B version of Video-LLaMA due to resource limitations. We have released \
152
+ the 13B version on our GitHub repository.
153
+
154
+
155
+ """
156
+
157
+ Note_markdown = ("""
158
+ ### Note
159
+ Video-LLaMA is a prototype model and may have limitations in understanding complex scenes, long videos, or specific domains.
160
+ The output results may be influenced by input quality, limitations of the dataset, and the model's susceptibility to illusions. Please interpret the results with caution.
161
+
162
+ **Copyright 2023 Alibaba DAMO Academy.**
163
+ """)
164
+
165
+ cite_markdown = ("""
166
+ ## Citation
167
+ If you find our project useful, hope you can star our repo and cite our paper as follows:
168
+ ```
169
+ @article{damonlpsg2023videollama,
170
+ author = {Zhang, Hang and Li, Xin and Bing, Lidong},
171
+ title = {Video-LLaMA: An Instruction-tuned Audio-Visual Language Model for Video Understanding},
172
+ year = 2023,
173
+ journal = {arXiv preprint arXiv:2306.02858}
174
+ url = {https://arxiv.org/abs/2306.02858}
175
+ }
176
+ """)
177
+
178
+ case_note_upload = ("""
179
+ ### We provide some examples at the bottom of the page. Simply click on them to try them out directly.
180
+ """)
181
+
182
+ #TODO show examples below
183
+
184
+ with gr.Blocks() as demo:
185
+ gr.Markdown(title)
186
+
187
+ with gr.Row():
188
+ with gr.Column(scale=0.5):
189
+ video = gr.Video()
190
+ image = gr.Image(type="filepath")
191
+ gr.Markdown(case_note_upload)
192
+
193
+ upload_button = gr.Button(value="Upload & Start Chat", interactive=True, variant="primary")
194
+ clear = gr.Button("Restart")
195
+
196
+ num_beams = gr.Slider(
197
+ minimum=1,
198
+ maximum=10,
199
+ value=1,
200
+ step=1,
201
+ interactive=True,
202
+ label="beam search numbers)",
203
+ )
204
+
205
+ temperature = gr.Slider(
206
+ minimum=0.1,
207
+ maximum=2.0,
208
+ value=1.0,
209
+ step=0.1,
210
+ interactive=True,
211
+ label="Temperature",
212
+ )
213
+
214
+ audio = gr.Checkbox(interactive=True, value=False, label="Audio")
215
+ gr.Markdown(Note_markdown)
216
+ with gr.Column():
217
+ chat_state = gr.State()
218
+ img_list = gr.State()
219
+ chatbot = gr.Chatbot(label='Video-LLaMA')
220
+ text_input = gr.Textbox(label='User', placeholder='Upload your image/video first, or directly click the examples at the bottom of the page.', interactive=False)
221
+
222
+
223
+ with gr.Column():
224
+ gr.Examples(examples=[
225
+ [f"examples/dog.jpg", "Which breed is this dog? "],
226
+ [f"examples/JonSnow.jpg", "Who's the man on the right? "],
227
+ [f"examples/Statue_of_Liberty.jpg", "Can you tell me about this building? "],
228
+ ], inputs=[image, text_input])
229
+
230
+ gr.Examples(examples=[
231
+ [f"examples/skateboarding_dog.mp4", "What is the dog doing? "],
232
+ [f"examples/birthday.mp4", "What is the boy doing? "],
233
+ [f"examples/IronMan.mp4", "Is the guy in the video Iron Man? "],
234
+ ], inputs=[video, text_input])
235
+
236
+ gr.Markdown(cite_markdown)
237
+ upload_button.click(upload_imgorvideo, [video, image, text_input, chat_state,chatbot], [video, image, text_input, upload_button, chat_state, img_list,chatbot])
238
+
239
+ text_input.submit(gradio_ask, [text_input, chatbot, chat_state], [text_input, chatbot, chat_state]).then(
240
+ gradio_answer, [chatbot, chat_state, img_list, num_beams, temperature], [chatbot, chat_state, img_list]
241
+ )
242
+ clear.click(gradio_reset, [chat_state, img_list], [chatbot, video, image, text_input, upload_button, chat_state, img_list], queue=False)
243
+
244
+ demo.launch(share=False, enable_queue=True)
245
+
246
+
247
+ # %%
environment.yml ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: videollama
2
+ channels:
3
+ - pytorch
4
+ - defaults
5
+ - anaconda
6
+ dependencies:
7
+ - python=3.9
8
+ - cudatoolkit
9
+ - pip
10
+ - pytorch=1.12.1
11
+ - pytorch-mutex=1.0=cuda
12
+ - torchaudio=0.12.1
13
+ - torchvision=0.13.1
14
+
15
+ - pip:
16
+ - accelerate==0.16.0
17
+ - aiohttp==3.8.4
18
+ - aiosignal==1.3.1
19
+ - async-timeout==4.0.2
20
+ - attrs==22.2.0
21
+ - bitsandbytes==0.37.0
22
+ - cchardet==2.1.7
23
+ - chardet==5.1.0
24
+ - contourpy==1.0.7
25
+ - cycler==0.11.0
26
+ - filelock==3.9.0
27
+ - fonttools==4.38.0
28
+ - frozenlist==1.3.3
29
+ - huggingface-hub==0.13.4
30
+ - importlib-resources==5.12.0
31
+ - kiwisolver==1.4.4
32
+ - matplotlib==3.7.0
33
+ - multidict==6.0.4
34
+ - openai==0.27.0
35
+ - packaging==23.0
36
+ - psutil==5.9.4
37
+ - pycocotools==2.0.6
38
+ - pyparsing==3.0.9
39
+ - python-dateutil==2.8.2
40
+ - pyyaml==6.0
41
+ - regex==2022.10.31
42
+ - tokenizers==0.13.2
43
+ - tqdm==4.64.1
44
+ - transformers==4.28.0
45
+ - timm==0.6.13
46
+ - spacy==3.5.1
47
+ - webdataset==0.2.48
48
+ - scikit-learn==1.2.2
49
+ - scipy==1.10.1
50
+ - yarl==1.8.2
51
+ - zipp==3.14.0
52
+ - omegaconf==2.3.0
53
+ - opencv-python==4.7.0.72
54
+ - iopath==0.1.10
55
+ - decord==0.6.0
56
+ - tenacity==8.2.2
57
+ - peft
58
+ - pycocoevalcap
59
+ - sentence-transformers
60
+ - umap-learn
61
+ - notebook
62
+ - gradio==3.24.1
63
+ - gradio-client==0.0.8
64
+ - wandb
65
+ - einops
66
+ - SentencePiece
67
+ - ftfy
68
+ - pytorchvideo==0.1.5
69
+
70
+
eval_configs/video_llama_eval_only_vl.yaml ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ arch: video_llama
3
+ model_type: pretrain_vicuna
4
+ freeze_vit: True
5
+ freeze_qformer: True
6
+ max_txt_len: 512
7
+ end_sym: "###"
8
+ low_resource: False
9
+
10
+ frozen_llama_proj: False
11
+
12
+ # If you want use LLaMA-2-chat,
13
+ # some ckpts could be download from our provided huggingface repo
14
+ # i.e. https://huggingface.co/DAMO-NLP-SG/Video-LLaMA-2-13B-Finetuned
15
+ llama_model: "ckpt/vicuna-13b/" or "ckpt/vicuna-7b/" or "ckpt/llama-2-7b-chat-hf" or "ckpt/llama-2-13b-chat-hf"
16
+ ckpt: 'path/pretrained_visual_branch_ckpt' # you can use our pretrained ckpt from https://huggingface.co/DAMO-NLP-SG/Video-LLaMA-2-13B-Pretrained/
17
+ equip_audio_branch: False
18
+
19
+ fusion_head_layers: 2
20
+ max_frame_pos: 32
21
+ fusion_header_type: "seqTransf"
22
+
23
+
24
+ datasets:
25
+ webvid:
26
+ vis_processor:
27
+ train:
28
+ name: "alpro_video_eval"
29
+ n_frms: 8
30
+ image_size: 224
31
+ text_processor:
32
+ train:
33
+ name: "blip_caption"
34
+
35
+ run:
36
+ task: video_text_pretrain
eval_configs/video_llama_eval_withaudio.yaml ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ arch: video_llama
3
+ model_type: pretrain_vicuna
4
+ freeze_vit: True
5
+ freeze_qformer: True
6
+ max_txt_len: 512
7
+ end_sym: "###"
8
+ low_resource: False
9
+
10
+ frozen_llama_proj: False
11
+
12
+ llama_model: "Video-LLaMA-2-7B-Finetuned/llama-2-7b-chat-hf"
13
+ imagebind_ckpt_path: "Video-LLaMA-2-7B-Finetuned"
14
+ ckpt: "Video-LLaMA-2-7B-Finetuned/VL_LLaMA_2_7B_Finetuned.pth"
15
+ ckpt_2: "Video-LLaMA-2-7B-Finetuned/AL_LLaMA_2_7B_Finetuned.pth"
16
+
17
+ equip_audio_branch: True # whether equips the audio branch
18
+ fusion_head_layers: 2
19
+ max_frame_pos: 32
20
+ fusion_header_type: "seqTransf"
21
+
22
+
23
+ datasets:
24
+ webvid:
25
+ vis_processor:
26
+ train:
27
+ name: "alpro_video_eval"
28
+ n_frms: 8
29
+ image_size: 224
30
+ text_processor:
31
+ train:
32
+ name: "blip_caption"
33
+
34
+ run:
35
+ task: video_text_pretrain
figs/architecture.png ADDED
figs/architecture_v2.png ADDED
figs/video_llama_logo.jpg ADDED
prompts/alignment_image.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ <Image><ImageHere></Image> Describe this image in detail.
2
+ <Image><ImageHere></Image> Take a look at this image and describe what you notice.
3
+ <Image><ImageHere></Image> Please provide a detailed description of the picture.
4
+ <Image><ImageHere></Image> Could you describe the contents of this image for me?
requirement.txt ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ --extra-index-url https://download.pytorch.org/whl/cu113
2
+ torch==1.12.1
3
+ torchvision==0.13.1
4
+ transformers==4.28.0
5
+ tqdm
6
+ decord
7
+ timm
8
+ einops
9
+ opencv_python
10
+ torchvision
11
+
12
+ salesforce-lavis
13
+ accelerate
setup.py ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from setuptools import setup, find_packages
2
+
3
+
4
+ def _install_requirements():
5
+ with open('requirement.txt') as f:
6
+ packages = [line.strip() for line in f if not line.startswith('http')]
7
+ return packages
8
+
9
+
10
+ setup(
11
+ name='videollama',
12
+ version='0.1.0',
13
+ python_requires='>=3.8.0',
14
+ packages=find_packages(),
15
+ include_package_data=True,
16
+ install_requires=_install_requirements(),
17
+ )
train.py ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Adapted from salesforce@LAVIS and Vision-CAIR@MiniGPT-4. Below is the original copyright:
3
+ Copyright (c) 2022, salesforce.com, inc.
4
+ All rights reserved.
5
+ SPDX-License-Identifier: BSD-3-Clause
6
+ For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause
7
+ """
8
+
9
+ import argparse
10
+ import os
11
+ import random
12
+
13
+ import numpy as np
14
+ import torch
15
+ import torch.backends.cudnn as cudnn
16
+
17
+ import video_llama.tasks as tasks
18
+ from video_llama.common.config import Config
19
+ from video_llama.common.dist_utils import get_rank, init_distributed_mode
20
+ from video_llama.common.logger import setup_logger
21
+ from video_llama.common.optims import (
22
+ LinearWarmupCosineLRScheduler,
23
+ LinearWarmupStepLRScheduler,
24
+ )
25
+ from video_llama.common.registry import registry
26
+ from video_llama.common.utils import now
27
+
28
+ # imports modules for registration
29
+ from video_llama.datasets.builders import *
30
+ from video_llama.models import *
31
+ from video_llama.processors import *
32
+ from video_llama.runners import *
33
+ from video_llama.tasks import *
34
+
35
+
36
+ def parse_args():
37
+ parser = argparse.ArgumentParser(description="Training")
38
+
39
+ parser.add_argument("--cfg-path", required=True, help="path to configuration file.")
40
+ parser.add_argument(
41
+ "--options",
42
+ nargs="+",
43
+ help="override some settings in the used config, the key-value pair "
44
+ "in xxx=yyy format will be merged into config file (deprecate), "
45
+ "change to --cfg-options instead.",
46
+ )
47
+
48
+ args = parser.parse_args()
49
+ # if 'LOCAL_RANK' not in os.environ:
50
+ # os.environ['LOCAL_RANK'] = str(args.local_rank)
51
+
52
+ return args
53
+
54
+
55
+ def setup_seeds(config):
56
+ seed = config.run_cfg.seed + get_rank()
57
+
58
+ random.seed(seed)
59
+ np.random.seed(seed)
60
+ torch.manual_seed(seed)
61
+
62
+ cudnn.benchmark = False
63
+ cudnn.deterministic = True
64
+
65
+
66
+ def get_runner_class(cfg):
67
+ """
68
+ Get runner class from config. Default to epoch-based runner.
69
+ """
70
+ runner_cls = registry.get_runner_class(cfg.run_cfg.get("runner", "runner_base"))
71
+
72
+ return runner_cls
73
+
74
+
75
+ def main():
76
+ # allow auto-dl completes on main process without timeout when using NCCL backend.
77
+ # os.environ["NCCL_BLOCKING_WAIT"] = "1"
78
+
79
+ # set before init_distributed_mode() to ensure the same job_id shared across all ranks.
80
+ job_id = now()
81
+
82
+ cfg = Config(parse_args())
83
+
84
+ init_distributed_mode(cfg.run_cfg)
85
+
86
+ setup_seeds(cfg)
87
+
88
+ # set after init_distributed_mode() to only log on master.
89
+ setup_logger()
90
+
91
+ cfg.pretty_print()
92
+
93
+ task = tasks.setup_task(cfg)
94
+ datasets = task.build_datasets(cfg)
95
+
96
+ # datasets['webvid']['train'][0]
97
+ # datasets
98
+ model = task.build_model(cfg)
99
+
100
+ runner = get_runner_class(cfg)(
101
+ cfg=cfg, job_id=job_id, task=task, model=model, datasets=datasets
102
+ )
103
+ runner.train()
104
+
105
+
106
+ if __name__ == "__main__":
107
+ main()
train_configs/audiobranch_stage1_pretrain.yaml ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ arch: video_llama
3
+ model_type: pretrain_vicuna
4
+ freeze_vit: True
5
+ freeze_qformer: True
6
+ low_resource: False
7
+
8
+ # Q-Former
9
+ num_query_token: 32
10
+
11
+ # If you want train models based on LLaMA-2-chat,
12
+ # some ckpts could be download from our provided huggingface repo
13
+ # i.e. https://huggingface.co/DAMO-NLP-SG/Video-LLaMA-2-13B-Pretrained
14
+ llama_model: "ckpt/vicuna-13b/" or "ckpt/vicuna-7b/" or "ckpt/llama-2-7b-chat-hf" or "ckpt/llama-2-13b-chat-hf"
15
+ imagebind_ckpt_path: "ckpt/imagebind_path/"
16
+ llama_proj_model: 'ckpt/pretrained_minigpt4.pth' or '/mnt/workspace/ckpt/pretrained_minigpt4_7b.pth'
17
+ imagebind_ckpt_path: "ckpt/imagebind_path/"
18
+
19
+ # only train vision branch
20
+ equip_audio_branch: True # whether equips the audio branch
21
+ frozen_llama_proj: True
22
+ frozen_video_Qformer: True
23
+ frozen_audio_Qformer: False
24
+
25
+ fusion_head_layers: 2
26
+ max_frame_pos: 32
27
+ fusion_header_type: "seqTransf"
28
+ num_video_query_token: 32
29
+
30
+ datasets:
31
+ webvid:
32
+ data_type: video
33
+ build_info:
34
+ anno_dir: path/webvid/webvid_train_data/filter_annotations/
35
+ videos_dir: path/webvid/webvid_train_data/videos/
36
+
37
+ vis_processor:
38
+ train:
39
+ name: "alpro_video_train"
40
+ n_frms: 8
41
+ image_size: 224
42
+ text_processor:
43
+ train:
44
+ name: "blip_caption"
45
+ sample_ratio: 100
46
+
47
+ cc_sbu_align:
48
+ data_type: images
49
+ build_info:
50
+ storage: /path/LLaVA_cc3m
51
+ vis_processor:
52
+ train:
53
+ name: "blip2_image_train"
54
+ image_size: 224
55
+ text_processor:
56
+ train:
57
+ name: "blip_caption"
58
+ sample_ratio: 24
59
+
60
+ run:
61
+ task: video_text_pretrain
62
+ # optimizer
63
+ lr_sched: "linear_warmup_cosine_lr"
64
+ init_lr: 1e-4
65
+ min_lr: 8e-5
66
+ warmup_lr: 1e-6
67
+
68
+ weight_decay: 0.05
69
+ max_epoch: 5
70
+ batch_size_train: 32
71
+ batch_size_eval: 32
72
+ num_workers: 8
73
+ warmup_steps: 5000
74
+ iters_per_epoch: 5000
75
+
76
+ seed: 42
77
+ output_dir: "output/audiobranch_stage1_pretrain"
78
+
79
+ amp: True
80
+ resume_ckpt_path: null
81
+
82
+ evaluate: False
83
+ train_splits: ["train"]
84
+
85
+ device: "cuda"
86
+ world_size: 1
87
+ dist_url: "env://"
88
+ distributed: True
train_configs/audiobranch_stage2_finetune.yaml ADDED
@@ -0,0 +1,120 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ arch: video_llama
3
+ model_type: pretrain_vicuna
4
+ freeze_vit: True
5
+ freeze_qformer: True
6
+
7
+
8
+ # Q-Former
9
+ num_query_token: 32
10
+
11
+ # If you want train models based on LLaMA-2-chat,
12
+ # some ckpts could be download from our provided huggingface repo
13
+ # i.e. https://huggingface.co/DAMO-NLP-SG/Video-LLaMA-2-13B-Finetuned
14
+ llama_model: "ckpt/vicuna-13b/" or "ckpt/vicuna-7b/" or "ckpt/llama-2-7b-chat-hf" or "ckpt/llama-2-13b-chat-hf"
15
+ imagebind_ckpt_path: "ckpt/imagebind_path/"
16
+ # The ckpt of audio branch after stage1 pretrained,
17
+ ckpt: 'path/pretrained_visual_branch_ckpt' # you can use our pretrained ckpt from https://huggingface.co/DAMO-NLP-SG/Video-LLaMA-2-13B-Pretrained/
18
+ ckpt_2: 'path/pretrained_audio_branch_ckpt'
19
+
20
+ # only train audio branch
21
+ equip_audio_branch: True # whether equips the audio branch
22
+ frozen_llama_proj: True
23
+ frozen_video_Qformer: True
24
+ frozen_audio_Qformer: False
25
+
26
+ fusion_head_layers: 2
27
+ max_frame_pos: 32
28
+ fusion_header_type: "seqTransf"
29
+
30
+ max_txt_len: 512
31
+ # vicuna and llama_2_chat use different template !!!!
32
+
33
+ # for llama_2_chat:
34
+ # end_sym: "</s>"
35
+ # prompt_path: "prompts/alignment_image.txt"
36
+ # prompt_template: '[INST] <<SYS>>\n \n<</SYS>>\n\n{} [/INST] '
37
+
38
+ # for vicuna:
39
+ end_sym: "###"
40
+ prompt_path: "prompts/alignment_image.txt"
41
+ prompt_template: '###Human: {} ###Assistant: '
42
+
43
+
44
+
45
+
46
+ datasets:
47
+ cc_sbu_align:
48
+ data_type: images
49
+ build_info:
50
+ storage: path/cc_sbu_align/
51
+ vis_processor:
52
+ train:
53
+ name: "blip2_image_train"
54
+ image_size: 224
55
+ text_processor:
56
+ train:
57
+ name: "blip_caption"
58
+
59
+ llava_instruct:
60
+ data_type: images
61
+ build_info:
62
+ anno_dir: path/llava_instruct_150k.json
63
+ videos_dir: path/train2014/
64
+ vis_processor:
65
+ train:
66
+ name: "blip2_image_train"
67
+ image_size: 224
68
+ text_processor:
69
+ train:
70
+ name: "blip_caption"
71
+ num_video_query_token: 8
72
+ tokenizer_name: "ckpt/vicuna-13b/" or "ckpt/vicuna-7b/" or "ckpt/llama-2-7b-chat-hf" or "ckpt/llama-2-13b-chat-hf"
73
+ model_type: "llama_v2" or "vicuna" # need to set, as vicuna and llama_2_chat use different template
74
+
75
+ webvid_instruct:
76
+ data_type: video
77
+ build_info:
78
+ anno_dir: path/videochat_instruct_11k.json
79
+ videos_dir: path/webvid_align/videos/
80
+ vis_processor:
81
+ train:
82
+ name: "alpro_video_train"
83
+ n_frms: 8
84
+ image_size: 224
85
+ text_processor:
86
+ train:
87
+ name: "blip_caption"
88
+ num_video_query_token: 8
89
+ tokenizer_name: "ckpt/vicuna-13b/" or "ckpt/vicuna-7b/" or "ckpt/llama-2-7b-chat-hf" or "ckpt/llama-2-13b-chat-hf"
90
+ model_type: "llama_v2" or "vicuna" # need to set, as vicuna and llama_2_chat use different template
91
+
92
+ run:
93
+ task: video_text_pretrain
94
+ # optimizer
95
+ lr_sched: "linear_warmup_cosine_lr"
96
+ init_lr: 3e-5
97
+ min_lr: 1e-5
98
+ warmup_lr: 1e-6
99
+
100
+ weight_decay: 0.05
101
+ max_epoch: 3
102
+ iters_per_epoch: 1000
103
+ batch_size_train: 4
104
+ batch_size_eval: 2
105
+ num_workers: 4
106
+ warmup_steps: 400
107
+
108
+ seed: 42
109
+ output_dir: "output/audiobranch_stage2_finetune"
110
+
111
+ amp: True
112
+ resume_ckpt_path: null
113
+
114
+ evaluate: False
115
+ train_splits: ["train"]
116
+
117
+ device: "cuda"
118
+ world_size: 1
119
+ dist_url: "env://"
120
+ distributed: True
train_configs/visionbranch_stage1_pretrain.yaml ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ arch: video_llama
3
+ model_type: pretrain_vicuna
4
+ freeze_vit: True
5
+ freeze_qformer: True
6
+
7
+
8
+ # Q-Former
9
+ num_query_token: 32
10
+
11
+ # If you want train models based on LLaMA-2-chat,
12
+ # some ckpts could be download from our provided huggingface repo
13
+ # i.e. https://huggingface.co/DAMO-NLP-SG/Video-LLaMA-2-13B-Pretrained
14
+ llama_model: "ckpt/vicuna-13b/" or "ckpt/vicuna-7b/" or "ckpt/llama-2-7b-chat-hf" or "ckpt/llama-2-13b-chat-hf"
15
+ imagebind_ckpt_path: "ckpt/imagebind_path/"
16
+ llama_proj_model: 'ckpt/pretrained_minigpt4.pth' or '/mnt/workspace/ckpt/pretrained_minigpt4_7b.pth'
17
+
18
+ # only train vision branch
19
+ equip_audio_branch: False # whether equips the audio branch
20
+ frozen_llama_proj: False
21
+ frozen_video_Qformer: False
22
+ frozen_audio_Qformer: True
23
+
24
+ fusion_head_layers: 2
25
+ max_frame_pos: 32
26
+ fusion_header_type: "seqTransf"
27
+ num_video_query_token: 32
28
+
29
+ datasets:
30
+ webvid:
31
+ data_type: video
32
+ build_info:
33
+ anno_dir: path/webvid/webvid_train_data/filter_annotations/
34
+ videos_dir: path/webvid/webvid_train_data/videos/
35
+
36
+ vis_processor:
37
+ train:
38
+ name: "alpro_video_train"
39
+ n_frms: 8
40
+ image_size: 224
41
+ text_processor:
42
+ train:
43
+ name: "blip_caption"
44
+ sample_ratio: 100
45
+
46
+ cc_sbu_align:
47
+ data_type: images
48
+ build_info:
49
+ storage: /path/LLaVA_cc3m
50
+ vis_processor:
51
+ train:
52
+ name: "blip2_image_train"
53
+ image_size: 224
54
+ text_processor:
55
+ train:
56
+ name: "blip_caption"
57
+ sample_ratio: 24
58
+
59
+ run:
60
+ task: video_text_pretrain
61
+ # optimizer
62
+ lr_sched: "linear_warmup_cosine_lr"
63
+ init_lr: 1e-4
64
+ min_lr: 8e-5
65
+ warmup_lr: 1e-6
66
+
67
+ weight_decay: 0.05
68
+ max_epoch: 5
69
+ batch_size_train: 32
70
+ batch_size_eval: 32
71
+ num_workers: 8
72
+ warmup_steps: 2500
73
+ iters_per_epoch: 2500
74
+
75
+ seed: 42
76
+ output_dir: "output/videollama_stage1_pretrain"
77
+
78
+ amp: True
79
+ resume_ckpt_path: null
80
+
81
+ evaluate: False
82
+ train_splits: ["train"]
83
+
84
+ device: "cuda"
85
+ world_size: 1
86
+ dist_url: "env://"
87
+ distributed: True
train_configs/visionbranch_stage2_finetune.yaml ADDED
@@ -0,0 +1,122 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ arch: video_llama
3
+ model_type: pretrain_vicuna
4
+ freeze_vit: True
5
+ freeze_qformer: True
6
+
7
+
8
+ # Q-Former
9
+ num_query_token: 32
10
+
11
+ # If you want train models based on LLaMA-2-chat,
12
+ # some ckpts could be download from our provided huggingface repo
13
+ # i.e. https://huggingface.co/DAMO-NLP-SG/Video-LLaMA-2-13B-Finetuned
14
+ llama_model: "ckpt/vicuna-13b/" or "ckpt/vicuna-7b/" or "ckpt/llama-2-7b-chat-hf" or "ckpt/llama-2-13b-chat-hf"
15
+ imagebind_ckpt_path: "ckpt/imagebind_path/"
16
+
17
+ # The ckpt of vision branch after stage1 pretrained,
18
+ ckpt: 'path/pretrained_ckpt' # you can use our pretrained ckpt from https://huggingface.co/DAMO-NLP-SG/Video-LLaMA-2-13B-Pretrained/
19
+
20
+
21
+ # only train vision branch
22
+ equip_audio_branch: False # whether equips the audio branch
23
+ frozen_llama_proj: False
24
+ frozen_video_Qformer: False
25
+ frozen_audio_Qformer: True
26
+
27
+ fusion_head_layers: 2
28
+ max_frame_pos: 32
29
+ fusion_header_type: "seqTransf"
30
+
31
+ max_txt_len: 320
32
+
33
+ # vicuna and llama_2_chat use different template !!!
34
+
35
+ # for llama_2_chat:
36
+ # end_sym: "</s>"
37
+ # prompt_path: "prompts/alignment_image.txt"
38
+ # prompt_template: '[INST] <<SYS>>\n \n<</SYS>>\n\n{} [/INST] '
39
+
40
+ # for vicuna:
41
+ end_sym: "###"
42
+ prompt_path: "prompts/alignment_image.txt"
43
+ prompt_template: '###Human: {} ###Assistant: '
44
+
45
+
46
+
47
+
48
+ datasets:
49
+ cc_sbu_align:
50
+ data_type: images
51
+ build_info:
52
+ storage: path/cc_sbu_align/
53
+ vis_processor:
54
+ train:
55
+ name: "blip2_image_train"
56
+ image_size: 224
57
+ text_processor:
58
+ train:
59
+ name: "blip_caption"
60
+
61
+ llava_instruct:
62
+ data_type: images
63
+ build_info:
64
+ anno_dir: path/llava_instruct_150k.json
65
+ videos_dir: path/train2014/
66
+ vis_processor:
67
+ train:
68
+ name: "blip2_image_train"
69
+ image_size: 224
70
+ text_processor:
71
+ train:
72
+ name: "blip_caption"
73
+ num_video_query_token: 32
74
+ tokenizer_name: "ckpt/vicuna-13b/" or "ckpt/vicuna-7b/" or "ckpt/llama-2-7b-chat-hf" or "ckpt/llama-2-13b-chat-hf"
75
+ model_type: "llama_v2" or "vicuna" # need to set, as vicuna and llama_2_chat use different template
76
+
77
+ webvid_instruct:
78
+ data_type: video
79
+ build_info:
80
+ anno_dir: path/videochat_instruct_11k.json
81
+ videos_dir: path/webvid_align/videos/
82
+ vis_processor:
83
+ train:
84
+ name: "alpro_video_train"
85
+ n_frms: 8
86
+ image_size: 224
87
+ text_processor:
88
+ train:
89
+ name: "blip_caption"
90
+ num_video_query_token: 32
91
+ tokenizer_name: "ckpt/vicuna-13b/" or "ckpt/vicuna-7b/" or "ckpt/llama-2-7b-chat-hf" or "ckpt/llama-2-13b-chat-hf"
92
+ model_type: "llama_v2" or "vicuna" # need to set, as vicuna and llama_2_chat use different template
93
+
94
+ run:
95
+ task: video_text_pretrain
96
+ # optimizer
97
+ lr_sched: "linear_warmup_cosine_lr"
98
+ init_lr: 3e-5
99
+ min_lr: 1e-5
100
+ warmup_lr: 1e-6
101
+
102
+ weight_decay: 0.05
103
+ max_epoch: 3
104
+ iters_per_epoch: 1000
105
+ batch_size_train: 4
106
+ batch_size_eval: 4
107
+ num_workers: 4
108
+ warmup_steps: 1000
109
+
110
+ seed: 42
111
+ output_dir: "output/videollama_stage2_finetune"
112
+
113
+ amp: True
114
+ resume_ckpt_path: null
115
+
116
+ evaluate: False
117
+ train_splits: ["train"]
118
+
119
+ device: "cuda"
120
+ world_size: 1
121
+ dist_url: "env://"
122
+ distributed: True
video_llama/__init__.py ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Copyright (c) 2022, salesforce.com, inc.
3
+ All rights reserved.
4
+ SPDX-License-Identifier: BSD-3-Clause
5
+ For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause
6
+ """
7
+
8
+ import os
9
+ import sys
10
+
11
+ from omegaconf import OmegaConf
12
+
13
+ from video_llama.common.registry import registry
14
+
15
+ from video_llama.datasets.builders import *
16
+ from video_llama.models import *
17
+ from video_llama.processors import *
18
+ from video_llama.tasks import *
19
+
20
+
21
+ root_dir = os.path.dirname(os.path.abspath(__file__))
22
+ default_cfg = OmegaConf.load(os.path.join(root_dir, "configs/default.yaml"))
23
+
24
+ registry.register_path("library_root", root_dir)
25
+ repo_root = os.path.join(root_dir, "..")
26
+ registry.register_path("repo_root", repo_root)
27
+ cache_root = os.path.join(repo_root, default_cfg.env.cache_root)
28
+ registry.register_path("cache_root", cache_root)
29
+
30
+ registry.register("MAX_INT", sys.maxsize)
31
+ registry.register("SPLIT_NAMES", ["train", "val", "test"])
video_llama/__pycache__/__init__.cpython-39.pyc ADDED
Binary file (1.02 kB). View file
 
video_llama/common/__init__.py ADDED
File without changes
video_llama/common/__pycache__/__init__.cpython-39.pyc ADDED
Binary file (144 Bytes). View file
 
video_llama/common/__pycache__/config.cpython-39.pyc ADDED
Binary file (12.1 kB). View file
 
video_llama/common/__pycache__/dist_utils.cpython-39.pyc ADDED
Binary file (3.77 kB). View file
 
video_llama/common/__pycache__/logger.cpython-39.pyc ADDED
Binary file (6.4 kB). View file
 
video_llama/common/__pycache__/registry.cpython-39.pyc ADDED
Binary file (9.03 kB). View file
 
video_llama/common/__pycache__/utils.cpython-39.pyc ADDED
Binary file (12.6 kB). View file
 
video_llama/common/config.py ADDED
@@ -0,0 +1,468 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Copyright (c) 2022, salesforce.com, inc.
3
+ All rights reserved.
4
+ SPDX-License-Identifier: BSD-3-Clause
5
+ For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause
6
+ """
7
+
8
+ import logging
9
+ import json
10
+ from typing import Dict
11
+
12
+ from omegaconf import OmegaConf
13
+ from video_llama.common.registry import registry
14
+
15
+
16
+ class Config:
17
+ def __init__(self, args):
18
+ self.config = {}
19
+
20
+ self.args = args
21
+
22
+ # Register the config and configuration for setup
23
+ registry.register("configuration", self)
24
+
25
+ user_config = self._build_opt_list(self.args.options)
26
+
27
+ config = OmegaConf.load(self.args.cfg_path)
28
+
29
+ runner_config = self.build_runner_config(config)
30
+ model_config = self.build_model_config(config, **user_config)
31
+ dataset_config = self.build_dataset_config(config)
32
+
33
+ # Validate the user-provided runner configuration
34
+ # model and dataset configuration are supposed to be validated by the respective classes
35
+ # [TODO] validate the model/dataset configuration
36
+ # self._validate_runner_config(runner_config)
37
+
38
+ # Override the default configuration with user options.
39
+ self.config = OmegaConf.merge(
40
+ runner_config, model_config, dataset_config, user_config
41
+ )
42
+
43
+ def _validate_runner_config(self, runner_config):
44
+ """
45
+ This method validates the configuration, such that
46
+ 1) all the user specified options are valid;
47
+ 2) no type mismatches between the user specified options and the config.
48
+ """
49
+ runner_config_validator = create_runner_config_validator()
50
+ runner_config_validator.validate(runner_config)
51
+
52
+ def _build_opt_list(self, opts):
53
+ opts_dot_list = self._convert_to_dot_list(opts)
54
+ return OmegaConf.from_dotlist(opts_dot_list)
55
+
56
+ @staticmethod
57
+ def build_model_config(config, **kwargs):
58
+ model = config.get("model", None)
59
+ assert model is not None, "Missing model configuration file."
60
+
61
+ model_cls = registry.get_model_class(model.arch)
62
+ assert model_cls is not None, f"Model '{model.arch}' has not been registered."
63
+
64
+ model_type = kwargs.get("model.model_type", None)
65
+ if not model_type:
66
+ model_type = model.get("model_type", None)
67
+ # else use the model type selected by user.
68
+
69
+ assert model_type is not None, "Missing model_type."
70
+
71
+ model_config_path = model_cls.default_config_path(model_type=model_type)
72
+
73
+ model_config = OmegaConf.create()
74
+ # hierarchy override, customized config > default config
75
+ model_config = OmegaConf.merge(
76
+ model_config,
77
+ OmegaConf.load(model_config_path),
78
+ {"model": config["model"]},
79
+ )
80
+
81
+ return model_config
82
+
83
+ @staticmethod
84
+ def build_runner_config(config):
85
+ return {"run": config.run}
86
+
87
+ @staticmethod
88
+ def build_dataset_config(config):
89
+ datasets = config.get("datasets", None)
90
+ if datasets is None:
91
+ raise KeyError(
92
+ "Expecting 'datasets' as the root key for dataset configuration."
93
+ )
94
+
95
+ dataset_config = OmegaConf.create()
96
+
97
+ for dataset_name in datasets:
98
+ builder_cls = registry.get_builder_class(dataset_name)
99
+
100
+ dataset_config_type = datasets[dataset_name].get("type", "default")
101
+ dataset_config_path = builder_cls.default_config_path(
102
+ type=dataset_config_type
103
+ )
104
+
105
+ # hierarchy override, customized config > default config
106
+ dataset_config = OmegaConf.merge(
107
+ dataset_config,
108
+ OmegaConf.load(dataset_config_path),
109
+ {"datasets": {dataset_name: config["datasets"][dataset_name]}},
110
+ )
111
+
112
+ return dataset_config
113
+
114
+ def _convert_to_dot_list(self, opts):
115
+ if opts is None:
116
+ opts = []
117
+
118
+ if len(opts) == 0:
119
+ return opts
120
+
121
+ has_equal = opts[0].find("=") != -1
122
+
123
+ if has_equal:
124
+ return opts
125
+
126
+ return [(opt + "=" + value) for opt, value in zip(opts[0::2], opts[1::2])]
127
+
128
+ def get_config(self):
129
+ return self.config
130
+
131
+ @property
132
+ def run_cfg(self):
133
+ return self.config.run
134
+
135
+ @property
136
+ def datasets_cfg(self):
137
+ return self.config.datasets
138
+
139
+ @property
140
+ def model_cfg(self):
141
+ return self.config.model
142
+
143
+ def pretty_print(self):
144
+ logging.info("\n===== Running Parameters =====")
145
+ logging.info(self._convert_node_to_json(self.config.run))
146
+
147
+ logging.info("\n====== Dataset Attributes ======")
148
+ datasets = self.config.datasets
149
+
150
+ for dataset in datasets:
151
+ if dataset in self.config.datasets:
152
+ logging.info(f"\n======== {dataset} =======")
153
+ dataset_config = self.config.datasets[dataset]
154
+ logging.info(self._convert_node_to_json(dataset_config))
155
+ else:
156
+ logging.warning(f"No dataset named '{dataset}' in config. Skipping")
157
+
158
+ logging.info(f"\n====== Model Attributes ======")
159
+ logging.info(self._convert_node_to_json(self.config.model))
160
+
161
+ def _convert_node_to_json(self, node):
162
+ container = OmegaConf.to_container(node, resolve=True)
163
+ return json.dumps(container, indent=4, sort_keys=True)
164
+
165
+ def to_dict(self):
166
+ return OmegaConf.to_container(self.config)
167
+
168
+
169
+ def node_to_dict(node):
170
+ return OmegaConf.to_container(node)
171
+
172
+
173
+ class ConfigValidator:
174
+ """
175
+ This is a preliminary implementation to centralize and validate the configuration.
176
+ May be altered in the future.
177
+
178
+ A helper class to validate configurations from yaml file.
179
+
180
+ This serves the following purposes:
181
+ 1. Ensure all the options in the yaml are defined, raise error if not.
182
+ 2. when type mismatches are found, the validator will raise an error.
183
+ 3. a central place to store and display helpful messages for supported configurations.
184
+
185
+ """
186
+
187
+ class _Argument:
188
+ def __init__(self, name, choices=None, type=None, help=None):
189
+ self.name = name
190
+ self.val = None
191
+ self.choices = choices
192
+ self.type = type
193
+ self.help = help
194
+
195
+ def __str__(self):
196
+ s = f"{self.name}={self.val}"
197
+ if self.type is not None:
198
+ s += f", ({self.type})"
199
+ if self.choices is not None:
200
+ s += f", choices: {self.choices}"
201
+ if self.help is not None:
202
+ s += f", ({self.help})"
203
+ return s
204
+
205
+ def __init__(self, description):
206
+ self.description = description
207
+
208
+ self.arguments = dict()
209
+
210
+ self.parsed_args = None
211
+
212
+ def __getitem__(self, key):
213
+ assert self.parsed_args is not None, "No arguments parsed yet."
214
+
215
+ return self.parsed_args[key]
216
+
217
+ def __str__(self) -> str:
218
+ return self.format_help()
219
+
220
+ def add_argument(self, *args, **kwargs):
221
+ """
222
+ Assume the first argument is the name of the argument.
223
+ """
224
+ self.arguments[args[0]] = self._Argument(*args, **kwargs)
225
+
226
+ def validate(self, config=None):
227
+ """
228
+ Convert yaml config (dict-like) to list, required by argparse.
229
+ """
230
+ for k, v in config.items():
231
+ assert (
232
+ k in self.arguments
233
+ ), f"""{k} is not a valid argument. Support arguments are {self.format_arguments()}."""
234
+
235
+ if self.arguments[k].type is not None:
236
+ try:
237
+ self.arguments[k].val = self.arguments[k].type(v)
238
+ except ValueError:
239
+ raise ValueError(f"{k} is not a valid {self.arguments[k].type}.")
240
+
241
+ if self.arguments[k].choices is not None:
242
+ assert (
243
+ v in self.arguments[k].choices
244
+ ), f"""{k} must be one of {self.arguments[k].choices}."""
245
+
246
+ return config
247
+
248
+ def format_arguments(self):
249
+ return str([f"{k}" for k in sorted(self.arguments.keys())])
250
+
251
+ def format_help(self):
252
+ # description + key-value pair string for each argument
253
+ help_msg = str(self.description)
254
+ return help_msg + ", available arguments: " + self.format_arguments()
255
+
256
+ def print_help(self):
257
+ # display help message
258
+ print(self.format_help())
259
+
260
+
261
+ def create_runner_config_validator():
262
+ validator = ConfigValidator(description="Runner configurations")
263
+
264
+ validator.add_argument(
265
+ "runner",
266
+ type=str,
267
+ choices=["runner_base", "runner_iter"],
268
+ help="""Runner to use. The "runner_base" uses epoch-based training while iter-based
269
+ runner runs based on iters. Default: runner_base""",
270
+ )
271
+ # add argumetns for training dataset ratios
272
+ validator.add_argument(
273
+ "train_dataset_ratios",
274
+ type=Dict[str, float],
275
+ help="""Ratios of training dataset. This is used in iteration-based runner.
276
+ Do not support for epoch-based runner because how to define an epoch becomes tricky.
277
+ Default: None""",
278
+ )
279
+ validator.add_argument(
280
+ "max_iters",
281
+ type=float,
282
+ help="Maximum number of iterations to run.",
283
+ )
284
+ validator.add_argument(
285
+ "max_epoch",
286
+ type=int,
287
+ help="Maximum number of epochs to run.",
288
+ )
289
+ # add arguments for iters_per_inner_epoch
290
+ validator.add_argument(
291
+ "iters_per_inner_epoch",
292
+ type=float,
293
+ help="Number of iterations per inner epoch. This is required when runner is runner_iter.",
294
+ )
295
+ lr_scheds_choices = registry.list_lr_schedulers()
296
+ validator.add_argument(
297
+ "lr_sched",
298
+ type=str,
299
+ choices=lr_scheds_choices,
300
+ help="Learning rate scheduler to use, from {}".format(lr_scheds_choices),
301
+ )
302
+ task_choices = registry.list_tasks()
303
+ validator.add_argument(
304
+ "task",
305
+ type=str,
306
+ choices=task_choices,
307
+ help="Task to use, from {}".format(task_choices),
308
+ )
309
+ # add arguments for init_lr
310
+ validator.add_argument(
311
+ "init_lr",
312
+ type=float,
313
+ help="Initial learning rate. This will be the learning rate after warmup and before decay.",
314
+ )
315
+ # add arguments for min_lr
316
+ validator.add_argument(
317
+ "min_lr",
318
+ type=float,
319
+ help="Minimum learning rate (after decay).",
320
+ )
321
+ # add arguments for warmup_lr
322
+ validator.add_argument(
323
+ "warmup_lr",
324
+ type=float,
325
+ help="Starting learning rate for warmup.",
326
+ )
327
+ # add arguments for learning rate decay rate
328
+ validator.add_argument(
329
+ "lr_decay_rate",
330
+ type=float,
331
+ help="Learning rate decay rate. Required if using a decaying learning rate scheduler.",
332
+ )
333
+ # add arguments for weight decay
334
+ validator.add_argument(
335
+ "weight_decay",
336
+ type=float,
337
+ help="Weight decay rate.",
338
+ )
339
+ # add arguments for training batch size
340
+ validator.add_argument(
341
+ "batch_size_train",
342
+ type=int,
343
+ help="Training batch size.",
344
+ )
345
+ # add arguments for evaluation batch size
346
+ validator.add_argument(
347
+ "batch_size_eval",
348
+ type=int,
349
+ help="Evaluation batch size, including validation and testing.",
350
+ )
351
+ # add arguments for number of workers for data loading
352
+ validator.add_argument(
353
+ "num_workers",
354
+ help="Number of workers for data loading.",
355
+ )
356
+ # add arguments for warm up steps
357
+ validator.add_argument(
358
+ "warmup_steps",
359
+ type=int,
360
+ help="Number of warmup steps. Required if a warmup schedule is used.",
361
+ )
362
+ # add arguments for random seed
363
+ validator.add_argument(
364
+ "seed",
365
+ type=int,
366
+ help="Random seed.",
367
+ )
368
+ # add arguments for output directory
369
+ validator.add_argument(
370
+ "output_dir",
371
+ type=str,
372
+ help="Output directory to save checkpoints and logs.",
373
+ )
374
+ # add arguments for whether only use evaluation
375
+ validator.add_argument(
376
+ "evaluate",
377
+ help="Whether to only evaluate the model. If true, training will not be performed.",
378
+ )
379
+ # add arguments for splits used for training, e.g. ["train", "val"]
380
+ validator.add_argument(
381
+ "train_splits",
382
+ type=list,
383
+ help="Splits to use for training.",
384
+ )
385
+ # add arguments for splits used for validation, e.g. ["val"]
386
+ validator.add_argument(
387
+ "valid_splits",
388
+ type=list,
389
+ help="Splits to use for validation. If not provided, will skip the validation.",
390
+ )
391
+ # add arguments for splits used for testing, e.g. ["test"]
392
+ validator.add_argument(
393
+ "test_splits",
394
+ type=list,
395
+ help="Splits to use for testing. If not provided, will skip the testing.",
396
+ )
397
+ # add arguments for accumulating gradient for iterations
398
+ validator.add_argument(
399
+ "accum_grad_iters",
400
+ type=int,
401
+ help="Number of iterations to accumulate gradient for.",
402
+ )
403
+
404
+ # ====== distributed training ======
405
+ validator.add_argument(
406
+ "device",
407
+ type=str,
408
+ choices=["cpu", "cuda"],
409
+ help="Device to use. Support 'cuda' or 'cpu' as for now.",
410
+ )
411
+ validator.add_argument(
412
+ "world_size",
413
+ type=int,
414
+ help="Number of processes participating in the job.",
415
+ )
416
+ validator.add_argument("dist_url", type=str)
417
+ validator.add_argument("distributed", type=bool)
418
+ # add arguments to opt using distributed sampler during evaluation or not
419
+ validator.add_argument(
420
+ "use_dist_eval_sampler",
421
+ type=bool,
422
+ help="Whether to use distributed sampler during evaluation or not.",
423
+ )
424
+
425
+ # ====== task specific ======
426
+ # generation task specific arguments
427
+ # add arguments for maximal length of text output
428
+ validator.add_argument(
429
+ "max_len",
430
+ type=int,
431
+ help="Maximal length of text output.",
432
+ )
433
+ # add arguments for minimal length of text output
434
+ validator.add_argument(
435
+ "min_len",
436
+ type=int,
437
+ help="Minimal length of text output.",
438
+ )
439
+ # add arguments number of beams
440
+ validator.add_argument(
441
+ "num_beams",
442
+ type=int,
443
+ help="Number of beams used for beam search.",
444
+ )
445
+
446
+ # vqa task specific arguments
447
+ # add arguments for number of answer candidates
448
+ validator.add_argument(
449
+ "num_ans_candidates",
450
+ type=int,
451
+ help="""For ALBEF and BLIP, these models first rank answers according to likelihood to select answer candidates.""",
452
+ )
453
+ # add arguments for inference method
454
+ validator.add_argument(
455
+ "inference_method",
456
+ type=str,
457
+ choices=["genearte", "rank"],
458
+ help="""Inference method to use for question answering. If rank, requires a answer list.""",
459
+ )
460
+
461
+ # ====== model specific ======
462
+ validator.add_argument(
463
+ "k_test",
464
+ type=int,
465
+ help="Number of top k most similar samples from ITC/VTC selection to be tested.",
466
+ )
467
+
468
+ return validator
video_llama/common/dist_utils.py ADDED
@@ -0,0 +1,137 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Copyright (c) 2022, salesforce.com, inc.
3
+ All rights reserved.
4
+ SPDX-License-Identifier: BSD-3-Clause
5
+ For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause
6
+ """
7
+
8
+ import datetime
9
+ import functools
10
+ import os
11
+
12
+ import torch
13
+ import torch.distributed as dist
14
+ import timm.models.hub as timm_hub
15
+
16
+
17
+ def setup_for_distributed(is_master):
18
+ """
19
+ This function disables printing when not in master process
20
+ """
21
+ import builtins as __builtin__
22
+
23
+ builtin_print = __builtin__.print
24
+
25
+ def print(*args, **kwargs):
26
+ force = kwargs.pop("force", False)
27
+ if is_master or force:
28
+ builtin_print(*args, **kwargs)
29
+
30
+ __builtin__.print = print
31
+
32
+
33
+ def is_dist_avail_and_initialized():
34
+ if not dist.is_available():
35
+ return False
36
+ if not dist.is_initialized():
37
+ return False
38
+ return True
39
+
40
+
41
+ def get_world_size():
42
+ if not is_dist_avail_and_initialized():
43
+ return 1
44
+ return dist.get_world_size()
45
+
46
+
47
+ def get_rank():
48
+ if not is_dist_avail_and_initialized():
49
+ return 0
50
+ return dist.get_rank()
51
+
52
+
53
+ def is_main_process():
54
+ return get_rank() == 0
55
+
56
+
57
+ def init_distributed_mode(args):
58
+ if "RANK" in os.environ and "WORLD_SIZE" in os.environ:
59
+ args.rank = int(os.environ["RANK"])
60
+ args.world_size = int(os.environ["WORLD_SIZE"])
61
+ args.gpu = int(os.environ["LOCAL_RANK"])
62
+ elif "SLURM_PROCID" in os.environ:
63
+ args.rank = int(os.environ["SLURM_PROCID"])
64
+ args.gpu = args.rank % torch.cuda.device_count()
65
+ else:
66
+ print("Not using distributed mode")
67
+ args.distributed = False
68
+ return
69
+
70
+ args.distributed = True
71
+
72
+ torch.cuda.set_device(args.gpu)
73
+ args.dist_backend = "nccl"
74
+ print(
75
+ "| distributed init (rank {}, world {}): {}".format(
76
+ args.rank, args.world_size, args.dist_url
77
+ ),
78
+ flush=True,
79
+ )
80
+ torch.distributed.init_process_group(
81
+ backend=args.dist_backend,
82
+ init_method=args.dist_url,
83
+ world_size=args.world_size,
84
+ rank=args.rank,
85
+ timeout=datetime.timedelta(
86
+ days=365
87
+ ), # allow auto-downloading and de-compressing
88
+ )
89
+ torch.distributed.barrier()
90
+ setup_for_distributed(args.rank == 0)
91
+
92
+
93
+ def get_dist_info():
94
+ if torch.__version__ < "1.0":
95
+ initialized = dist._initialized
96
+ else:
97
+ initialized = dist.is_initialized()
98
+ if initialized:
99
+ rank = dist.get_rank()
100
+ world_size = dist.get_world_size()
101
+ else: # non-distributed training
102
+ rank = 0
103
+ world_size = 1
104
+ return rank, world_size
105
+
106
+
107
+ def main_process(func):
108
+ @functools.wraps(func)
109
+ def wrapper(*args, **kwargs):
110
+ rank, _ = get_dist_info()
111
+ if rank == 0:
112
+ return func(*args, **kwargs)
113
+
114
+ return wrapper
115
+
116
+
117
+ def download_cached_file(url, check_hash=True, progress=False):
118
+ """
119
+ Download a file from a URL and cache it locally. If the file already exists, it is not downloaded again.
120
+ If distributed, only the main process downloads the file, and the other processes wait for the file to be downloaded.
121
+ """
122
+
123
+ def get_cached_file_path():
124
+ # a hack to sync the file path across processes
125
+ parts = torch.hub.urlparse(url)
126
+ filename = os.path.basename(parts.path)
127
+ cached_file = os.path.join(timm_hub.get_cache_dir(), filename)
128
+
129
+ return cached_file
130
+
131
+ if is_main_process():
132
+ timm_hub.download_cached_file(url, check_hash, progress)
133
+
134
+ if is_dist_avail_and_initialized():
135
+ dist.barrier()
136
+
137
+ return get_cached_file_path()
video_llama/common/gradcam.py ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ from matplotlib import pyplot as plt
3
+ from scipy.ndimage import filters
4
+ from skimage import transform as skimage_transform
5
+
6
+
7
+ def getAttMap(img, attMap, blur=True, overlap=True):
8
+ attMap -= attMap.min()
9
+ if attMap.max() > 0:
10
+ attMap /= attMap.max()
11
+ attMap = skimage_transform.resize(attMap, (img.shape[:2]), order=3, mode="constant")
12
+ if blur:
13
+ attMap = filters.gaussian_filter(attMap, 0.02 * max(img.shape[:2]))
14
+ attMap -= attMap.min()
15
+ attMap /= attMap.max()
16
+ cmap = plt.get_cmap("jet")
17
+ attMapV = cmap(attMap)
18
+ attMapV = np.delete(attMapV, 3, 2)
19
+ if overlap:
20
+ attMap = (
21
+ 1 * (1 - attMap**0.7).reshape(attMap.shape + (1,)) * img
22
+ + (attMap**0.7).reshape(attMap.shape + (1,)) * attMapV
23
+ )
24
+ return attMap
video_llama/common/logger.py ADDED
@@ -0,0 +1,195 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Copyright (c) 2022, salesforce.com, inc.
3
+ All rights reserved.
4
+ SPDX-License-Identifier: BSD-3-Clause
5
+ For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause
6
+ """
7
+
8
+ import datetime
9
+ import logging
10
+ import time
11
+ from collections import defaultdict, deque
12
+
13
+ import torch
14
+ import torch.distributed as dist
15
+
16
+ from video_llama.common import dist_utils
17
+
18
+
19
+ class SmoothedValue(object):
20
+ """Track a series of values and provide access to smoothed values over a
21
+ window or the global series average.
22
+ """
23
+
24
+ def __init__(self, window_size=20, fmt=None):
25
+ if fmt is None:
26
+ fmt = "{median:.4f} ({global_avg:.4f})"
27
+ self.deque = deque(maxlen=window_size)
28
+ self.total = 0.0
29
+ self.count = 0
30
+ self.fmt = fmt
31
+
32
+ def update(self, value, n=1):
33
+ self.deque.append(value)
34
+ self.count += n
35
+ self.total += value * n
36
+
37
+ def synchronize_between_processes(self):
38
+ """
39
+ Warning: does not synchronize the deque!
40
+ """
41
+ if not dist_utils.is_dist_avail_and_initialized():
42
+ return
43
+ t = torch.tensor([self.count, self.total], dtype=torch.float64, device="cuda")
44
+ dist.barrier()
45
+ dist.all_reduce(t)
46
+ t = t.tolist()
47
+ self.count = int(t[0])
48
+ self.total = t[1]
49
+
50
+ @property
51
+ def median(self):
52
+ d = torch.tensor(list(self.deque))
53
+ return d.median().item()
54
+
55
+ @property
56
+ def avg(self):
57
+ d = torch.tensor(list(self.deque), dtype=torch.float32)
58
+ return d.mean().item()
59
+
60
+ @property
61
+ def global_avg(self):
62
+ return self.total / self.count
63
+
64
+ @property
65
+ def max(self):
66
+ return max(self.deque)
67
+
68
+ @property
69
+ def value(self):
70
+ return self.deque[-1]
71
+
72
+ def __str__(self):
73
+ return self.fmt.format(
74
+ median=self.median,
75
+ avg=self.avg,
76
+ global_avg=self.global_avg,
77
+ max=self.max,
78
+ value=self.value,
79
+ )
80
+
81
+
82
+ class MetricLogger(object):
83
+ def __init__(self, delimiter="\t"):
84
+ self.meters = defaultdict(SmoothedValue)
85
+ self.delimiter = delimiter
86
+
87
+ def update(self, **kwargs):
88
+ for k, v in kwargs.items():
89
+ if isinstance(v, torch.Tensor):
90
+ v = v.item()
91
+ assert isinstance(v, (float, int))
92
+ self.meters[k].update(v)
93
+
94
+ def __getattr__(self, attr):
95
+ if attr in self.meters:
96
+ return self.meters[attr]
97
+ if attr in self.__dict__:
98
+ return self.__dict__[attr]
99
+ raise AttributeError(
100
+ "'{}' object has no attribute '{}'".format(type(self).__name__, attr)
101
+ )
102
+
103
+ def __str__(self):
104
+ loss_str = []
105
+ for name, meter in self.meters.items():
106
+ loss_str.append("{}: {}".format(name, str(meter)))
107
+ return self.delimiter.join(loss_str)
108
+
109
+ def global_avg(self):
110
+ loss_str = []
111
+ for name, meter in self.meters.items():
112
+ loss_str.append("{}: {:.4f}".format(name, meter.global_avg))
113
+ return self.delimiter.join(loss_str)
114
+
115
+ def synchronize_between_processes(self):
116
+ for meter in self.meters.values():
117
+ meter.synchronize_between_processes()
118
+
119
+ def add_meter(self, name, meter):
120
+ self.meters[name] = meter
121
+
122
+ def log_every(self, iterable, print_freq, header=None):
123
+ i = 0
124
+ if not header:
125
+ header = ""
126
+ start_time = time.time()
127
+ end = time.time()
128
+ iter_time = SmoothedValue(fmt="{avg:.4f}")
129
+ data_time = SmoothedValue(fmt="{avg:.4f}")
130
+ space_fmt = ":" + str(len(str(len(iterable)))) + "d"
131
+ log_msg = [
132
+ header,
133
+ "[{0" + space_fmt + "}/{1}]",
134
+ "eta: {eta}",
135
+ "{meters}",
136
+ "time: {time}",
137
+ "data: {data}",
138
+ ]
139
+ if torch.cuda.is_available():
140
+ log_msg.append("max mem: {memory:.0f}")
141
+ log_msg = self.delimiter.join(log_msg)
142
+ MB = 1024.0 * 1024.0
143
+ for obj in iterable:
144
+ data_time.update(time.time() - end)
145
+ yield obj
146
+ iter_time.update(time.time() - end)
147
+ if i % print_freq == 0 or i == len(iterable) - 1:
148
+ eta_seconds = iter_time.global_avg * (len(iterable) - i)
149
+ eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
150
+ if torch.cuda.is_available():
151
+ print(
152
+ log_msg.format(
153
+ i,
154
+ len(iterable),
155
+ eta=eta_string,
156
+ meters=str(self),
157
+ time=str(iter_time),
158
+ data=str(data_time),
159
+ memory=torch.cuda.max_memory_allocated() / MB,
160
+ )
161
+ )
162
+ else:
163
+ print(
164
+ log_msg.format(
165
+ i,
166
+ len(iterable),
167
+ eta=eta_string,
168
+ meters=str(self),
169
+ time=str(iter_time),
170
+ data=str(data_time),
171
+ )
172
+ )
173
+ i += 1
174
+ end = time.time()
175
+ total_time = time.time() - start_time
176
+ total_time_str = str(datetime.timedelta(seconds=int(total_time)))
177
+ print(
178
+ "{} Total time: {} ({:.4f} s / it)".format(
179
+ header, total_time_str, total_time / len(iterable)
180
+ )
181
+ )
182
+
183
+
184
+ class AttrDict(dict):
185
+ def __init__(self, *args, **kwargs):
186
+ super(AttrDict, self).__init__(*args, **kwargs)
187
+ self.__dict__ = self
188
+
189
+
190
+ def setup_logger():
191
+ logging.basicConfig(
192
+ level=logging.INFO if dist_utils.is_main_process() else logging.WARN,
193
+ format="%(asctime)s [%(levelname)s] %(message)s",
194
+ handlers=[logging.StreamHandler()],
195
+ )
video_llama/common/optims.py ADDED
@@ -0,0 +1,119 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Copyright (c) 2022, salesforce.com, inc.
3
+ All rights reserved.
4
+ SPDX-License-Identifier: BSD-3-Clause
5
+ For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause
6
+ """
7
+
8
+ import math
9
+
10
+ from video_llama.common.registry import registry
11
+
12
+
13
+ @registry.register_lr_scheduler("linear_warmup_step_lr")
14
+ class LinearWarmupStepLRScheduler:
15
+ def __init__(
16
+ self,
17
+ optimizer,
18
+ max_epoch,
19
+ min_lr,
20
+ init_lr,
21
+ decay_rate=1,
22
+ warmup_start_lr=-1,
23
+ warmup_steps=0,
24
+ **kwargs
25
+ ):
26
+ self.optimizer = optimizer
27
+
28
+ self.max_epoch = max_epoch
29
+ self.min_lr = min_lr
30
+
31
+ self.decay_rate = decay_rate
32
+
33
+ self.init_lr = init_lr
34
+ self.warmup_steps = warmup_steps
35
+ self.warmup_start_lr = warmup_start_lr if warmup_start_lr >= 0 else init_lr
36
+
37
+ def step(self, cur_epoch, cur_step):
38
+ if cur_epoch == 0:
39
+ warmup_lr_schedule(
40
+ step=cur_step,
41
+ optimizer=self.optimizer,
42
+ max_step=self.warmup_steps,
43
+ init_lr=self.warmup_start_lr,
44
+ max_lr=self.init_lr,
45
+ )
46
+ else:
47
+ step_lr_schedule(
48
+ epoch=cur_epoch,
49
+ optimizer=self.optimizer,
50
+ init_lr=self.init_lr,
51
+ min_lr=self.min_lr,
52
+ decay_rate=self.decay_rate,
53
+ )
54
+
55
+
56
+ @registry.register_lr_scheduler("linear_warmup_cosine_lr")
57
+ class LinearWarmupCosineLRScheduler:
58
+ def __init__(
59
+ self,
60
+ optimizer,
61
+ max_epoch,
62
+ iters_per_epoch,
63
+ min_lr,
64
+ init_lr,
65
+ warmup_steps=0,
66
+ warmup_start_lr=-1,
67
+ **kwargs
68
+ ):
69
+ self.optimizer = optimizer
70
+
71
+ self.max_epoch = max_epoch
72
+ self.iters_per_epoch = iters_per_epoch
73
+ self.min_lr = min_lr
74
+
75
+ self.init_lr = init_lr
76
+ self.warmup_steps = warmup_steps
77
+ self.warmup_start_lr = warmup_start_lr if warmup_start_lr >= 0 else init_lr
78
+
79
+ def step(self, cur_epoch, cur_step):
80
+ total_cur_step = cur_epoch * self.iters_per_epoch + cur_step
81
+ if total_cur_step < self.warmup_steps:
82
+ warmup_lr_schedule(
83
+ step=cur_step,
84
+ optimizer=self.optimizer,
85
+ max_step=self.warmup_steps,
86
+ init_lr=self.warmup_start_lr,
87
+ max_lr=self.init_lr,
88
+ )
89
+ else:
90
+ cosine_lr_schedule(
91
+ epoch=total_cur_step,
92
+ optimizer=self.optimizer,
93
+ max_epoch=self.max_epoch * self.iters_per_epoch,
94
+ init_lr=self.init_lr,
95
+ min_lr=self.min_lr,
96
+ )
97
+
98
+
99
+ def cosine_lr_schedule(optimizer, epoch, max_epoch, init_lr, min_lr):
100
+ """Decay the learning rate"""
101
+ lr = (init_lr - min_lr) * 0.5 * (
102
+ 1.0 + math.cos(math.pi * epoch / max_epoch)
103
+ ) + min_lr
104
+ for param_group in optimizer.param_groups:
105
+ param_group["lr"] = lr
106
+
107
+
108
+ def warmup_lr_schedule(optimizer, step, max_step, init_lr, max_lr):
109
+ """Warmup the learning rate"""
110
+ lr = min(max_lr, init_lr + (max_lr - init_lr) * step / max(max_step, 1))
111
+ for param_group in optimizer.param_groups:
112
+ param_group["lr"] = lr
113
+
114
+
115
+ def step_lr_schedule(optimizer, epoch, init_lr, min_lr, decay_rate):
116
+ """Decay the learning rate"""
117
+ lr = max(min_lr, init_lr * (decay_rate**epoch))
118
+ for param_group in optimizer.param_groups:
119
+ param_group["lr"] = lr
video_llama/common/registry.py ADDED
@@ -0,0 +1,329 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Copyright (c) 2022, salesforce.com, inc.
3
+ All rights reserved.
4
+ SPDX-License-Identifier: BSD-3-Clause
5
+ For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause
6
+ """
7
+
8
+
9
+ class Registry:
10
+ mapping = {
11
+ "builder_name_mapping": {},
12
+ "task_name_mapping": {},
13
+ "processor_name_mapping": {},
14
+ "model_name_mapping": {},
15
+ "lr_scheduler_name_mapping": {},
16
+ "runner_name_mapping": {},
17
+ "state": {},
18
+ "paths": {},
19
+ }
20
+
21
+ @classmethod
22
+ def register_builder(cls, name):
23
+ r"""Register a dataset builder to registry with key 'name'
24
+
25
+ Args:
26
+ name: Key with which the builder will be registered.
27
+
28
+ Usage:
29
+
30
+ from video_llama.common.registry import registry
31
+ from video_llama.datasets.base_dataset_builder import BaseDatasetBuilder
32
+ """
33
+
34
+ def wrap(builder_cls):
35
+ from video_llama.datasets.builders.base_dataset_builder import BaseDatasetBuilder
36
+
37
+ assert issubclass(
38
+ builder_cls, BaseDatasetBuilder
39
+ ), "All builders must inherit BaseDatasetBuilder class, found {}".format(
40
+ builder_cls
41
+ )
42
+ if name in cls.mapping["builder_name_mapping"]:
43
+ raise KeyError(
44
+ "Name '{}' already registered for {}.".format(
45
+ name, cls.mapping["builder_name_mapping"][name]
46
+ )
47
+ )
48
+ cls.mapping["builder_name_mapping"][name] = builder_cls
49
+ return builder_cls
50
+
51
+ return wrap
52
+
53
+ @classmethod
54
+ def register_task(cls, name):
55
+ r"""Register a task to registry with key 'name'
56
+
57
+ Args:
58
+ name: Key with which the task will be registered.
59
+
60
+ Usage:
61
+
62
+ from video_llama.common.registry import registry
63
+ """
64
+
65
+ def wrap(task_cls):
66
+ from video_llama.tasks.base_task import BaseTask
67
+
68
+ assert issubclass(
69
+ task_cls, BaseTask
70
+ ), "All tasks must inherit BaseTask class"
71
+ if name in cls.mapping["task_name_mapping"]:
72
+ raise KeyError(
73
+ "Name '{}' already registered for {}.".format(
74
+ name, cls.mapping["task_name_mapping"][name]
75
+ )
76
+ )
77
+ cls.mapping["task_name_mapping"][name] = task_cls
78
+ return task_cls
79
+
80
+ return wrap
81
+
82
+ @classmethod
83
+ def register_model(cls, name):
84
+ r"""Register a task to registry with key 'name'
85
+
86
+ Args:
87
+ name: Key with which the task will be registered.
88
+
89
+ Usage:
90
+
91
+ from video_llama.common.registry import registry
92
+ """
93
+
94
+ def wrap(model_cls):
95
+ from video_llama.models import BaseModel
96
+
97
+ assert issubclass(
98
+ model_cls, BaseModel
99
+ ), "All models must inherit BaseModel class"
100
+ if name in cls.mapping["model_name_mapping"]:
101
+ raise KeyError(
102
+ "Name '{}' already registered for {}.".format(
103
+ name, cls.mapping["model_name_mapping"][name]
104
+ )
105
+ )
106
+ cls.mapping["model_name_mapping"][name] = model_cls
107
+ return model_cls
108
+
109
+ return wrap
110
+
111
+ @classmethod
112
+ def register_processor(cls, name):
113
+ r"""Register a processor to registry with key 'name'
114
+
115
+ Args:
116
+ name: Key with which the task will be registered.
117
+
118
+ Usage:
119
+
120
+ from video_llama.common.registry import registry
121
+ """
122
+
123
+ def wrap(processor_cls):
124
+ from video_llama.processors import BaseProcessor
125
+
126
+ assert issubclass(
127
+ processor_cls, BaseProcessor
128
+ ), "All processors must inherit BaseProcessor class"
129
+ if name in cls.mapping["processor_name_mapping"]:
130
+ raise KeyError(
131
+ "Name '{}' already registered for {}.".format(
132
+ name, cls.mapping["processor_name_mapping"][name]
133
+ )
134
+ )
135
+ cls.mapping["processor_name_mapping"][name] = processor_cls
136
+ return processor_cls
137
+
138
+ return wrap
139
+
140
+ @classmethod
141
+ def register_lr_scheduler(cls, name):
142
+ r"""Register a model to registry with key 'name'
143
+
144
+ Args:
145
+ name: Key with which the task will be registered.
146
+
147
+ Usage:
148
+
149
+ from video_llama.common.registry import registry
150
+ """
151
+
152
+ def wrap(lr_sched_cls):
153
+ if name in cls.mapping["lr_scheduler_name_mapping"]:
154
+ raise KeyError(
155
+ "Name '{}' already registered for {}.".format(
156
+ name, cls.mapping["lr_scheduler_name_mapping"][name]
157
+ )
158
+ )
159
+ cls.mapping["lr_scheduler_name_mapping"][name] = lr_sched_cls
160
+ return lr_sched_cls
161
+
162
+ return wrap
163
+
164
+ @classmethod
165
+ def register_runner(cls, name):
166
+ r"""Register a model to registry with key 'name'
167
+
168
+ Args:
169
+ name: Key with which the task will be registered.
170
+
171
+ Usage:
172
+
173
+ from video_llama.common.registry import registry
174
+ """
175
+
176
+ def wrap(runner_cls):
177
+ if name in cls.mapping["runner_name_mapping"]:
178
+ raise KeyError(
179
+ "Name '{}' already registered for {}.".format(
180
+ name, cls.mapping["runner_name_mapping"][name]
181
+ )
182
+ )
183
+ cls.mapping["runner_name_mapping"][name] = runner_cls
184
+ return runner_cls
185
+
186
+ return wrap
187
+
188
+ @classmethod
189
+ def register_path(cls, name, path):
190
+ r"""Register a path to registry with key 'name'
191
+
192
+ Args:
193
+ name: Key with which the path will be registered.
194
+
195
+ Usage:
196
+
197
+ from video_llama.common.registry import registry
198
+ """
199
+ assert isinstance(path, str), "All path must be str."
200
+ if name in cls.mapping["paths"]:
201
+ raise KeyError("Name '{}' already registered.".format(name))
202
+ cls.mapping["paths"][name] = path
203
+
204
+ @classmethod
205
+ def register(cls, name, obj):
206
+ r"""Register an item to registry with key 'name'
207
+
208
+ Args:
209
+ name: Key with which the item will be registered.
210
+
211
+ Usage::
212
+
213
+ from video_llama.common.registry import registry
214
+
215
+ registry.register("config", {})
216
+ """
217
+ path = name.split(".")
218
+ current = cls.mapping["state"]
219
+
220
+ for part in path[:-1]:
221
+ if part not in current:
222
+ current[part] = {}
223
+ current = current[part]
224
+
225
+ current[path[-1]] = obj
226
+
227
+ # @classmethod
228
+ # def get_trainer_class(cls, name):
229
+ # return cls.mapping["trainer_name_mapping"].get(name, None)
230
+
231
+ @classmethod
232
+ def get_builder_class(cls, name):
233
+ return cls.mapping["builder_name_mapping"].get(name, None)
234
+
235
+ @classmethod
236
+ def get_model_class(cls, name):
237
+ return cls.mapping["model_name_mapping"].get(name, None)
238
+
239
+ @classmethod
240
+ def get_task_class(cls, name):
241
+ return cls.mapping["task_name_mapping"].get(name, None)
242
+
243
+ @classmethod
244
+ def get_processor_class(cls, name):
245
+ return cls.mapping["processor_name_mapping"].get(name, None)
246
+
247
+ @classmethod
248
+ def get_lr_scheduler_class(cls, name):
249
+ return cls.mapping["lr_scheduler_name_mapping"].get(name, None)
250
+
251
+ @classmethod
252
+ def get_runner_class(cls, name):
253
+ return cls.mapping["runner_name_mapping"].get(name, None)
254
+
255
+ @classmethod
256
+ def list_runners(cls):
257
+ return sorted(cls.mapping["runner_name_mapping"].keys())
258
+
259
+ @classmethod
260
+ def list_models(cls):
261
+ return sorted(cls.mapping["model_name_mapping"].keys())
262
+
263
+ @classmethod
264
+ def list_tasks(cls):
265
+ return sorted(cls.mapping["task_name_mapping"].keys())
266
+
267
+ @classmethod
268
+ def list_processors(cls):
269
+ return sorted(cls.mapping["processor_name_mapping"].keys())
270
+
271
+ @classmethod
272
+ def list_lr_schedulers(cls):
273
+ return sorted(cls.mapping["lr_scheduler_name_mapping"].keys())
274
+
275
+ @classmethod
276
+ def list_datasets(cls):
277
+ return sorted(cls.mapping["builder_name_mapping"].keys())
278
+
279
+ @classmethod
280
+ def get_path(cls, name):
281
+ return cls.mapping["paths"].get(name, None)
282
+
283
+ @classmethod
284
+ def get(cls, name, default=None, no_warning=False):
285
+ r"""Get an item from registry with key 'name'
286
+
287
+ Args:
288
+ name (string): Key whose value needs to be retrieved.
289
+ default: If passed and key is not in registry, default value will
290
+ be returned with a warning. Default: None
291
+ no_warning (bool): If passed as True, warning when key doesn't exist
292
+ will not be generated. Useful for MMF's
293
+ internal operations. Default: False
294
+ """
295
+ original_name = name
296
+ name = name.split(".")
297
+ value = cls.mapping["state"]
298
+ for subname in name:
299
+ value = value.get(subname, default)
300
+ if value is default:
301
+ break
302
+
303
+ if (
304
+ "writer" in cls.mapping["state"]
305
+ and value == default
306
+ and no_warning is False
307
+ ):
308
+ cls.mapping["state"]["writer"].warning(
309
+ "Key {} is not present in registry, returning default value "
310
+ "of {}".format(original_name, default)
311
+ )
312
+ return value
313
+
314
+ @classmethod
315
+ def unregister(cls, name):
316
+ r"""Remove an item from registry with key 'name'
317
+
318
+ Args:
319
+ name: Key which needs to be removed.
320
+ Usage::
321
+
322
+ from mmf.common.registry import registry
323
+
324
+ config = registry.unregister("config")
325
+ """
326
+ return cls.mapping["state"].pop(name, None)
327
+
328
+
329
+ registry = Registry()