Spaces:
Configuration error
Configuration error
| from typing import Dict, List, Tuple, TypedDict | |
| import datasets as ds | |
| import evaluate | |
| import numpy as np | |
| import numpy.typing as npt | |
| _DESCRIPTION = """\ | |
| Computes some average IoU metrics that are different to each other in previous works. | |
| """ | |
| _KWARGS_DESCRIPTION = """\ | |
| Args: | |
| layouts (`list` of `dict`): A list of dictionaries representing layouts including `list` of `bboxes` (float) and `list` of `categories` (int). | |
| Returns: | |
| dicrionaly: A set of average IoU scores. | |
| Examples: | |
| Example 1: Single processing | |
| >>> metric = evaluate.load("creative-graphic-design/layout-average-iou") | |
| >>> num_samples, num_categories = 24, 4 | |
| >>> layout = { | |
| >>> "bboxes": np.random.rand(num_samples, num_categories), | |
| >>> "categories": np.random.randint(0, num_categories, size=(num_samples,)), | |
| >>> } | |
| >>> metric.add(layouts=layout) | |
| >>> print(metric.compute()) | |
| Example 2: Batch processing | |
| >>> metric = evaluate.load("creative-graphic-design/layout-average-iou") | |
| >>> batch_size, num_samples, num_categories = 512, 24, 4 | |
| >>> layouts = [ | |
| >>> { | |
| >>> "bboxes": np.random.rand(num_samples, num_categories), | |
| >>> "categories": np.random.randint(0, num_categories, size=(num_samples,)), | |
| >>> } | |
| >>> for _ in range(batch_size) | |
| >>> ] | |
| >>> metric.add_batch(layouts=layouts) | |
| >>> print(metric.compute()) | |
| """ | |
| _CITATION = """\ | |
| @inproceedings{arroyo2021variational, | |
| title={Variational transformer networks for layout generation}, | |
| author={Arroyo, Diego Martin and Postels, Janis and Tombari, Federico}, | |
| booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition}, | |
| pages={13642--13652}, | |
| year={2021} | |
| } | |
| @inproceedings{kong2022blt, | |
| title={BLT: bidirectional layout transformer for controllable layout generation}, | |
| author={Kong, Xiang and Jiang, Lu and Chang, Huiwen and Zhang, Han and Hao, Yuan and Gong, Haifeng and Essa, Irfan}, | |
| booktitle={European Conference on Computer Vision}, | |
| pages={474--490}, | |
| year={2022}, | |
| organization={Springer} | |
| } | |
| """ | |
| def convert_xywh_to_ltrb( | |
| batch_bbox: npt.NDArray[np.float64], | |
| ) -> Tuple[ | |
| npt.NDArray[np.float64], | |
| npt.NDArray[np.float64], | |
| npt.NDArray[np.float64], | |
| npt.NDArray[np.float64], | |
| ]: | |
| xc, yc, w, h = batch_bbox | |
| x1 = xc - w / 2 | |
| y1 = yc - h / 2 | |
| x2 = xc + w / 2 | |
| y2 = yc + h / 2 | |
| return (x1, y1, x2, y2) | |
| class Layout(TypedDict): | |
| bboxes: npt.NDArray[np.float64] | |
| categories: npt.NDArray[np.int64] | |
| def compute_iou( | |
| bbox1: npt.NDArray[np.float64], | |
| bbox2: npt.NDArray[np.float64], | |
| generalized: bool = False, | |
| ) -> npt.NDArray[np.float64]: | |
| # shape: bbox1 (N, 4), bbox2 (N, 4) | |
| assert bbox1.shape[0] == bbox2.shape[0] | |
| assert bbox1.shape[1] == bbox1.shape[1] == 4 | |
| l1, t1, r1, b1 = convert_xywh_to_ltrb(bbox1.T) | |
| l2, t2, r2, b2 = convert_xywh_to_ltrb(bbox2.T) | |
| a1, a2 = (r1 - l1) * (b1 - t1), (r2 - l2) * (b2 - t2) | |
| # intersection | |
| l_max = np.maximum(l1, l2) | |
| r_min = np.minimum(r1, r2) | |
| t_max = np.maximum(t1, t2) | |
| b_min = np.minimum(b1, b2) | |
| cond = (l_max < r_min) & (t_max < b_min) | |
| ai = np.where(cond, (r_min - l_max) * (b_min - t_max), np.zeros_like(a1[0])) | |
| au = a1 + a2 - ai | |
| iou = ai / au | |
| if not generalized: | |
| return iou | |
| # outer region | |
| l_min = np.minimum(l1, l2) | |
| r_max = np.maximum(r1, r2) | |
| t_min = np.minimum(t1, t2) | |
| b_max = np.maximum(b1, b2) | |
| ac = (r_max - l_min) * (b_max - t_min) | |
| giou = iou - (ac - au) / ac | |
| return giou | |
| def compute_perceptual_iou( | |
| bbox1: npt.NDArray[np.float64], | |
| bbox2: npt.NDArray[np.float64], | |
| N: int = 32, | |
| ) -> npt.NDArray[np.float64]: | |
| """ | |
| Computes 'Perceptual' IoU [Kong+, BLT'22] | |
| """ | |
| # shape: bbox1 (N, 4), bbox2 (N, 4) | |
| assert bbox1.shape[0] == bbox2.shape[0] | |
| assert bbox1.shape[1] == bbox1.shape[1] == 4 | |
| l1, t1, r1, b1 = convert_xywh_to_ltrb(bbox1.T) | |
| l2, t2, r2, b2 = convert_xywh_to_ltrb(bbox2.T) | |
| a1 = (r1 - l1) * (b1 - t1) | |
| # intersection | |
| l_max = np.maximum(l1, l2) | |
| r_min = np.minimum(r1, r2) | |
| t_max = np.maximum(t1, t2) | |
| b_min = np.minimum(b1, b2) | |
| cond = (l_max < r_min) & (t_max < b_min) | |
| ai = np.where(cond, (r_min - l_max) * (b_min - t_max), np.zeros_like(a1[0])) | |
| unique_box_1 = np.unique(bbox1, axis=0) | |
| l1, t1, r1, b1 = [ | |
| (x * N).round().astype(np.int32).clip(0, N) | |
| for x in convert_xywh_to_ltrb(unique_box_1.T) | |
| ] | |
| canvas = np.zeros((N, N)) | |
| for left, top, right, bottom in zip(l1, t1, r1, b1): | |
| canvas[top:bottom, left:right] = 1 | |
| global_area_union = canvas.sum() / (N**2) | |
| return ai / global_area_union if global_area_union > 0.0 else np.zeros((1,)) | |
| def compute_average_iou(layout: Layout, perceptual: bool) -> float: | |
| bboxes = np.asarray(layout["bboxes"]) | |
| N = len(bboxes) | |
| if N in [0, 1]: | |
| return 0.0 # no overlap in principle | |
| ii, jj = np.meshgrid(range(N), range(N)) | |
| ii, jj = ii.flatten(), jj.flatten() | |
| is_non_diag = ii != jj # IoU for diag is always 1.0 | |
| ii, jj = ii[is_non_diag], jj[is_non_diag] | |
| iou = ( | |
| compute_perceptual_iou(bboxes[ii], bboxes[jj]) | |
| if perceptual | |
| else compute_iou(bboxes[ii], bboxes[jj]) | |
| ) | |
| # pick all pairs of overlapped objects | |
| cond = iou > np.finfo(np.float32).eps # to avoid very-small nonzero | |
| score = iou[cond].mean().item() if len(iou[cond]) > 0 else 0.0 | |
| return score | |
| class LayoutAverageIoU(evaluate.Metric): | |
| def _info(self) -> evaluate.EvaluationModuleInfo: | |
| return evaluate.EvaluationModuleInfo( | |
| description=_DESCRIPTION, | |
| citation=_CITATION, | |
| inputs_description=_KWARGS_DESCRIPTION, | |
| features=ds.Features( | |
| { | |
| "layouts": { | |
| "bboxes": ds.Sequence(ds.Sequence((ds.Value("float64")))), | |
| "categories": ds.Sequence(ds.Value("int64")), | |
| } | |
| } | |
| ), | |
| codebase_urls=[ | |
| "https://github.com/CyberAgentAILab/layout-dm/blob/main/src/trainer/trainer/helpers/metric.py#L399-L431", | |
| ], | |
| ) | |
| def _compute(self, *, layouts: List[Layout]) -> Dict[str, float]: | |
| scores_blt = [ | |
| compute_average_iou(layout, perceptual=True) for layout in layouts | |
| ] | |
| scores_vnt = [ | |
| compute_average_iou(layout, perceptual=False) for layout in layouts | |
| ] | |
| score_blt = np.mean(scores_blt).item() | |
| score_vnt = np.mean(scores_vnt).item() | |
| results = { | |
| "average-iou_BLT": score_blt, | |
| "average-iou_VTN": score_vnt, | |
| } | |
| return results | |