layout-average-iou / layout-average-iou.py
shunk031's picture
deploy: 7d699a4c61838f1596e1cfa9c53f636c1c4126e5
f95a9d3
from typing import Dict, List, Tuple, TypedDict
import datasets as ds
import evaluate
import numpy as np
import numpy.typing as npt
_DESCRIPTION = """\
Computes some average IoU metrics that are different to each other in previous works.
"""
_KWARGS_DESCRIPTION = """\
Args:
layouts (`list` of `dict`): A list of dictionaries representing layouts including `list` of `bboxes` (float) and `list` of `categories` (int).
Returns:
dicrionaly: A set of average IoU scores.
Examples:
Example 1: Single processing
>>> metric = evaluate.load("creative-graphic-design/layout-average-iou")
>>> num_samples, num_categories = 24, 4
>>> layout = {
>>> "bboxes": np.random.rand(num_samples, num_categories),
>>> "categories": np.random.randint(0, num_categories, size=(num_samples,)),
>>> }
>>> metric.add(layouts=layout)
>>> print(metric.compute())
Example 2: Batch processing
>>> metric = evaluate.load("creative-graphic-design/layout-average-iou")
>>> batch_size, num_samples, num_categories = 512, 24, 4
>>> layouts = [
>>> {
>>> "bboxes": np.random.rand(num_samples, num_categories),
>>> "categories": np.random.randint(0, num_categories, size=(num_samples,)),
>>> }
>>> for _ in range(batch_size)
>>> ]
>>> metric.add_batch(layouts=layouts)
>>> print(metric.compute())
"""
_CITATION = """\
@inproceedings{arroyo2021variational,
title={Variational transformer networks for layout generation},
author={Arroyo, Diego Martin and Postels, Janis and Tombari, Federico},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={13642--13652},
year={2021}
}
@inproceedings{kong2022blt,
title={BLT: bidirectional layout transformer for controllable layout generation},
author={Kong, Xiang and Jiang, Lu and Chang, Huiwen and Zhang, Han and Hao, Yuan and Gong, Haifeng and Essa, Irfan},
booktitle={European Conference on Computer Vision},
pages={474--490},
year={2022},
organization={Springer}
}
"""
def convert_xywh_to_ltrb(
batch_bbox: npt.NDArray[np.float64],
) -> Tuple[
npt.NDArray[np.float64],
npt.NDArray[np.float64],
npt.NDArray[np.float64],
npt.NDArray[np.float64],
]:
xc, yc, w, h = batch_bbox
x1 = xc - w / 2
y1 = yc - h / 2
x2 = xc + w / 2
y2 = yc + h / 2
return (x1, y1, x2, y2)
class Layout(TypedDict):
bboxes: npt.NDArray[np.float64]
categories: npt.NDArray[np.int64]
def compute_iou(
bbox1: npt.NDArray[np.float64],
bbox2: npt.NDArray[np.float64],
generalized: bool = False,
) -> npt.NDArray[np.float64]:
# shape: bbox1 (N, 4), bbox2 (N, 4)
assert bbox1.shape[0] == bbox2.shape[0]
assert bbox1.shape[1] == bbox1.shape[1] == 4
l1, t1, r1, b1 = convert_xywh_to_ltrb(bbox1.T)
l2, t2, r2, b2 = convert_xywh_to_ltrb(bbox2.T)
a1, a2 = (r1 - l1) * (b1 - t1), (r2 - l2) * (b2 - t2)
# intersection
l_max = np.maximum(l1, l2)
r_min = np.minimum(r1, r2)
t_max = np.maximum(t1, t2)
b_min = np.minimum(b1, b2)
cond = (l_max < r_min) & (t_max < b_min)
ai = np.where(cond, (r_min - l_max) * (b_min - t_max), np.zeros_like(a1[0]))
au = a1 + a2 - ai
iou = ai / au
if not generalized:
return iou
# outer region
l_min = np.minimum(l1, l2)
r_max = np.maximum(r1, r2)
t_min = np.minimum(t1, t2)
b_max = np.maximum(b1, b2)
ac = (r_max - l_min) * (b_max - t_min)
giou = iou - (ac - au) / ac
return giou
def compute_perceptual_iou(
bbox1: npt.NDArray[np.float64],
bbox2: npt.NDArray[np.float64],
N: int = 32,
) -> npt.NDArray[np.float64]:
"""
Computes 'Perceptual' IoU [Kong+, BLT'22]
"""
# shape: bbox1 (N, 4), bbox2 (N, 4)
assert bbox1.shape[0] == bbox2.shape[0]
assert bbox1.shape[1] == bbox1.shape[1] == 4
l1, t1, r1, b1 = convert_xywh_to_ltrb(bbox1.T)
l2, t2, r2, b2 = convert_xywh_to_ltrb(bbox2.T)
a1 = (r1 - l1) * (b1 - t1)
# intersection
l_max = np.maximum(l1, l2)
r_min = np.minimum(r1, r2)
t_max = np.maximum(t1, t2)
b_min = np.minimum(b1, b2)
cond = (l_max < r_min) & (t_max < b_min)
ai = np.where(cond, (r_min - l_max) * (b_min - t_max), np.zeros_like(a1[0]))
unique_box_1 = np.unique(bbox1, axis=0)
l1, t1, r1, b1 = [
(x * N).round().astype(np.int32).clip(0, N)
for x in convert_xywh_to_ltrb(unique_box_1.T)
]
canvas = np.zeros((N, N))
for left, top, right, bottom in zip(l1, t1, r1, b1):
canvas[top:bottom, left:right] = 1
global_area_union = canvas.sum() / (N**2)
return ai / global_area_union if global_area_union > 0.0 else np.zeros((1,))
def compute_average_iou(layout: Layout, perceptual: bool) -> float:
bboxes = np.asarray(layout["bboxes"])
N = len(bboxes)
if N in [0, 1]:
return 0.0 # no overlap in principle
ii, jj = np.meshgrid(range(N), range(N))
ii, jj = ii.flatten(), jj.flatten()
is_non_diag = ii != jj # IoU for diag is always 1.0
ii, jj = ii[is_non_diag], jj[is_non_diag]
iou = (
compute_perceptual_iou(bboxes[ii], bboxes[jj])
if perceptual
else compute_iou(bboxes[ii], bboxes[jj])
)
# pick all pairs of overlapped objects
cond = iou > np.finfo(np.float32).eps # to avoid very-small nonzero
score = iou[cond].mean().item() if len(iou[cond]) > 0 else 0.0
return score
class LayoutAverageIoU(evaluate.Metric):
def _info(self) -> evaluate.EvaluationModuleInfo:
return evaluate.EvaluationModuleInfo(
description=_DESCRIPTION,
citation=_CITATION,
inputs_description=_KWARGS_DESCRIPTION,
features=ds.Features(
{
"layouts": {
"bboxes": ds.Sequence(ds.Sequence((ds.Value("float64")))),
"categories": ds.Sequence(ds.Value("int64")),
}
}
),
codebase_urls=[
"https://github.com/CyberAgentAILab/layout-dm/blob/main/src/trainer/trainer/helpers/metric.py#L399-L431",
],
)
def _compute(self, *, layouts: List[Layout]) -> Dict[str, float]:
scores_blt = [
compute_average_iou(layout, perceptual=True) for layout in layouts
]
scores_vnt = [
compute_average_iou(layout, perceptual=False) for layout in layouts
]
score_blt = np.mean(scores_blt).item()
score_vnt = np.mean(scores_vnt).item()
results = {
"average-iou_BLT": score_blt,
"average-iou_VTN": score_vnt,
}
return results