Spaces:
No application file
No application file
| from typing import List, Union | |
| import datasets as ds | |
| import evaluate | |
| import numpy as np | |
| import numpy.typing as npt | |
| _DESCRIPTION = r"""\ | |
| Computes the average IoU of all pairs of elements except for underlay. | |
| """ | |
| _KWARGS_DESCRIPTION = """\ | |
| FIXME | |
| """ | |
| _CITATION = """\ | |
| @inproceedings{hsu2023posterlayout, | |
| title={Posterlayout: A new benchmark and approach for content-aware visual-textual presentation layout}, | |
| author={Hsu, Hsiao Yuan and He, Xiangteng and Peng, Yuxin and Kong, Hao and Zhang, Qing}, | |
| booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition}, | |
| pages={6018--6026}, | |
| year={2023} | |
| } | |
| """ | |
| class LayoutOverlay(evaluate.Metric): | |
| def __init__( | |
| self, | |
| canvas_width: int, | |
| canvas_height: int, | |
| **kwargs, | |
| ) -> None: | |
| super().__init__(**kwargs) | |
| self.canvas_width = canvas_width | |
| self.canvas_height = canvas_height | |
| def _info(self) -> evaluate.EvaluationModuleInfo: | |
| return evaluate.MetricInfo( | |
| description=_DESCRIPTION, | |
| citation=_CITATION, | |
| inputs_description=_KWARGS_DESCRIPTION, | |
| features=ds.Features( | |
| { | |
| "predictions": ds.Sequence(ds.Sequence(ds.Value("float64"))), | |
| "gold_labels": ds.Sequence(ds.Sequence(ds.Value("int64"))), | |
| } | |
| ), | |
| codebase_urls=[ | |
| "https://github.com/PKU-ICST-MIPL/PosterLayout-CVPR2023/blob/main/eval.py#L205-L222", | |
| ], | |
| ) | |
| def get_rid_of_invalid( | |
| self, predictions: npt.NDArray[np.float64], gold_labels: npt.NDArray[np.int64] | |
| ) -> npt.NDArray[np.int64]: | |
| assert len(predictions) == len(gold_labels) | |
| w = self.canvas_width / 100 | |
| h = self.canvas_height / 100 | |
| for i, prediction in enumerate(predictions): | |
| for j, b in enumerate(prediction): | |
| xl, yl, xr, yr = b | |
| xl = max(0, xl) | |
| yl = max(0, yl) | |
| xr = min(self.canvas_width, xr) | |
| yr = min(self.canvas_height, yr) | |
| if abs((xr - xl) * (yr - yl)) < w * h * 10: | |
| if gold_labels[i, j]: | |
| gold_labels[i, j] = 0 | |
| return gold_labels | |
| def metrics_iou( | |
| self, bb1: npt.NDArray[np.float64], bb2: npt.NDArray[np.float64] | |
| ) -> float: | |
| # shape: bb1 = (4,), bb2 = (4,) | |
| xl_1, yl_1, xr_1, yr_1 = bb1 | |
| xl_2, yl_2, xr_2, yr_2 = bb2 | |
| w_1 = xr_1 - xl_1 | |
| w_2 = xr_2 - xl_2 | |
| h_1 = yr_1 - yl_1 | |
| h_2 = yr_2 - yl_2 | |
| w_inter = min(xr_1, xr_2) - max(xl_1, xl_2) | |
| h_inter = min(yr_1, yr_2) - max(yl_1, yl_2) | |
| a_1 = w_1 * h_1 | |
| a_2 = w_2 * h_2 | |
| a_inter = w_inter * h_inter | |
| if w_inter <= 0 or h_inter <= 0: | |
| a_inter = 0 | |
| return a_inter / (a_1 + a_2 - a_inter) | |
| def _compute( | |
| self, | |
| *, | |
| predictions: Union[npt.NDArray[np.float64], List[List[float]]], | |
| gold_labels: Union[npt.NDArray[np.int64], List[int]], | |
| ) -> float: | |
| predictions = np.array(predictions) | |
| gold_labels = np.array(gold_labels) | |
| predictions[:, :, ::2] *= self.canvas_width | |
| predictions[:, :, 1::2] *= self.canvas_height | |
| gold_labels = self.get_rid_of_invalid( | |
| predictions=predictions, gold_labels=gold_labels | |
| ) | |
| score = 0.0 | |
| for gold_label, prediction in zip(gold_labels, predictions): | |
| ove = 0.0 | |
| mask = (gold_label > 0).reshape(-1) & (gold_label != 3).reshape(-1) | |
| mask_box = prediction[mask] | |
| n = len(mask_box) | |
| for i in range(n): | |
| bb1 = mask_box[i] | |
| for j in range(i + 1, n): | |
| bb2 = mask_box[j] | |
| ove += self.metrics_iou(bb1, bb2) | |
| score += ove / n | |
| return score / len(gold_labels) | |