Spaces:
Running
Running
from tabnanny import verbose | |
import torch | |
import math | |
from audiocraft.models import MusicGen | |
import numpy as np | |
from PIL import Image, ImageDraw, ImageFont, ImageColor | |
import string | |
import tempfile | |
import os | |
import textwrap | |
import requests | |
from io import BytesIO | |
from huggingface_hub import hf_hub_download | |
import librosa | |
INTERRUPTING = False | |
def separate_audio_segments(audio, segment_duration=30, overlap=1): | |
sr, audio_data = audio[0], audio[1] | |
segment_samples = sr * segment_duration | |
total_samples = max(min((len(audio_data) // segment_samples), 25), 0) | |
overlap_samples = sr * overlap | |
segments = [] | |
start_sample = 0 | |
# handle the case where the audio is shorter than the segment duration | |
if total_samples == 0: | |
total_samples = 1 | |
segment_samples = len(audio_data) | |
overlap_samples = 0 | |
while total_samples >= segment_samples: | |
# Collect the segment | |
# the end sample is the start sample plus the segment samples, | |
# the start sample, after 0, is minus the overlap samples to account for the overlap | |
end_sample = start_sample + segment_samples | |
segment = audio_data[start_sample:end_sample] | |
segments.append((sr, segment)) | |
start_sample += segment_samples - overlap_samples | |
total_samples -= segment_samples | |
# Collect the final segment | |
if total_samples > 0: | |
segment = audio_data[-segment_samples:] | |
segments.append((sr, segment)) | |
print(f"separate_audio_segments: {len(segments)} segments of length {segment_samples // sr} seconds") | |
return segments | |
def generate_music_segments(text, melody, seed, MODEL, duration:int=10, overlap:int=1, segment_duration:int=30, prompt_index:int=0, harmony_only:bool= False): | |
# generate audio segments | |
melody_segments = separate_audio_segments(melody, segment_duration, 0) | |
# Create lists to store the melody tensors for each segment | |
melodys = [] | |
output_segments = [] | |
last_chunk = [] | |
text += ", seed=" + str(seed) | |
prompt_segment = None | |
# prevent hacking | |
duration = min(duration, 720) | |
overlap = min(overlap, 15) | |
# Calculate the total number of segments | |
total_segments = max(math.ceil(duration / segment_duration),1) | |
#calculate duration loss from segment overlap | |
duration_loss = max(total_segments - 1,0) * math.ceil(overlap / 2) | |
#calc excess duration | |
excess_duration = segment_duration - (total_segments * segment_duration - duration) | |
print(f"total Segments to Generate: {total_segments} for {duration} seconds. Each segment is {segment_duration} seconds. Excess {excess_duration} Overlap Loss {duration_loss}") | |
duration += duration_loss | |
while excess_duration + duration_loss > segment_duration: | |
total_segments += 1 | |
#calculate duration loss from segment overlap | |
duration_loss += math.ceil(overlap / 2) | |
#calc excess duration | |
excess_duration = segment_duration - (total_segments * segment_duration - duration) | |
print(f"total Segments to Generate: {total_segments} for {duration} seconds. Each segment is {segment_duration} seconds. Excess {excess_duration} Overlap Loss {duration_loss}") | |
if excess_duration + duration_loss > segment_duration: | |
duration += duration_loss | |
duration_loss = 0 | |
total_segments = min(total_segments, (720 // segment_duration)) | |
# If melody_segments is shorter than total_segments, repeat the segments until the total_segments is reached | |
if len(melody_segments) < total_segments: | |
#fix melody_segments | |
for i in range(total_segments - len(melody_segments)): | |
segment = melody_segments[i] | |
melody_segments.append(segment) | |
print(f"melody_segments: {len(melody_segments)} fixed") | |
# Iterate over the segments to create list of Meldoy tensors | |
for segment_idx in range(total_segments): | |
if INTERRUPTING: | |
return [], duration | |
print(f"segment {segment_idx + 1} of {total_segments} \r") | |
if harmony_only: | |
# REMOVE PERCUSION FROM MELODY | |
# Apply HPSS using librosa | |
verse_harmonic, verse_percussive = librosa.effects.hpss(melody_segments[segment_idx][1]) | |
# Convert the separated components back to torch.Tensor | |
#harmonic_tensor = torch.from_numpy(verse_harmonic) | |
#percussive_tensor = torch.from_numpy(verse_percussive) | |
sr, verse = melody_segments[segment_idx][0], torch.from_numpy(verse_harmonic).to(MODEL.device).float().t().unsqueeze(0) | |
else: | |
sr, verse = melody_segments[segment_idx][0], torch.from_numpy(melody_segments[segment_idx][1]).to(MODEL.device).float().t().unsqueeze(0) | |
print(f"shape:{verse.shape} dim:{verse.dim()}") | |
if verse.dim() == 2: | |
verse = verse[None] | |
verse = verse[..., :int(sr * MODEL.lm.cfg.dataset.segment_duration)] | |
# Append the segment to the melodys list | |
melodys.append(verse) | |
torch.manual_seed(seed) | |
# If user selects a prompt segment, generate a new prompt segment to use on all segments | |
#default to the first segment for prompt conditioning | |
prompt_verse = melodys[0] | |
if prompt_index > 0: | |
# Get a prompt segment from the selected verse, normally the first verse | |
prompt_verse = melodys[prompt_index if prompt_index <= (total_segments - 1) else (total_segments -1)] | |
# set the prompt segment MODEL generation params | |
MODEL.set_generation_params( | |
use_sampling=True, | |
top_k=MODEL.generation_params["top_k"], | |
top_p=MODEL.generation_params["top_p"], | |
temperature=MODEL.generation_params["temp"], | |
cfg_coef=MODEL.generation_params["cfg_coef"], | |
duration=segment_duration, | |
two_step_cfg=False, | |
rep_penalty=0.5 | |
) | |
# Generate a new prompt segment. This will be applied to all segments for consistency | |
print(f"Generating New Prompt Segment: {text} from verse {prompt_index}\r") | |
prompt_segment = MODEL.generate_with_all( | |
descriptions=[text], | |
melody_wavs=prompt_verse, | |
sample_rate=sr, | |
progress=False, | |
prompt=None, | |
) | |
for idx, verse in enumerate(melodys): | |
if INTERRUPTING: | |
return output_segments, duration | |
print(f'Segment duration: {segment_duration}, duration: {duration}, overlap: {overlap} Overlap Loss: {duration_loss}') | |
# Compensate for the length of final segment | |
if ((idx + 1) == len(melodys)) or (duration < segment_duration): | |
mod_duration = max(min(duration, segment_duration),1) | |
print(f'Modify verse length, duration: {duration}, overlap: {overlap} Overlap Loss: {duration_loss} to mod duration: {mod_duration}') | |
MODEL.set_generation_params( | |
use_sampling=True, | |
top_k=MODEL.generation_params["top_k"], | |
top_p=MODEL.generation_params["top_p"], | |
temperature=MODEL.generation_params["temp"], | |
cfg_coef=MODEL.generation_params["cfg_coef"], | |
duration=mod_duration, | |
two_step_cfg=False, | |
rep_penalty=0.5 | |
) | |
try: | |
# get last chunk | |
verse = verse[:, :, -mod_duration*MODEL.sample_rate:] | |
prompt_segment = prompt_segment[:, :, -mod_duration*MODEL.sample_rate:] | |
except: | |
# get first chunk | |
verse = verse[:, :, :mod_duration*MODEL.sample_rate] | |
prompt_segment = prompt_segment[:, :, :mod_duration*MODEL.sample_rate] | |
print(f"Generating New Melody Segment {idx + 1}: {text}\r") | |
output = MODEL.generate_with_all( | |
descriptions=[text], | |
melody_wavs=verse, | |
sample_rate=sr, | |
progress=False, | |
prompt=prompt_segment, | |
) | |
# If user selects a prompt segment, use the prompt segment for all segments | |
# Otherwise, use the previous segment as the prompt | |
if prompt_index < 0: | |
prompt_segment = output | |
# Append the generated output to the list of segments | |
#output_segments.append(output[:, :segment_duration]) | |
output_segments.append(output) | |
print(f"output_segments: {len(output_segments)}: shape: {output.shape} dim {output.dim()}") | |
#track duration | |
if duration > segment_duration: | |
duration -= segment_duration | |
return output_segments, excess_duration | |
def save_image(image): | |
""" | |
Saves a PIL image to a temporary file and returns the file path. | |
Parameters: | |
- image: PIL.Image | |
The PIL image object to be saved. | |
Returns: | |
- str or None: The file path where the image was saved, | |
or None if there was an error saving the image. | |
""" | |
temp_dir = tempfile.gettempdir() | |
temp_file = tempfile.NamedTemporaryFile(suffix=".png", dir=temp_dir, delete=False) | |
temp_file.close() | |
file_path = temp_file.name | |
try: | |
image.save(file_path) | |
except Exception as e: | |
print("Unable to save image:", str(e)) | |
return None | |
finally: | |
return file_path | |
def hex_to_rgba(hex_color): | |
try: | |
# Convert hex color to RGBA tuple | |
rgba = ImageColor.getcolor(hex_color, "RGBA") | |
except ValueError: | |
# If the hex color is invalid, default to yellow | |
rgba = (255,255,0,255) | |
return rgba | |
def load_font(font_name, font_size=16): | |
""" | |
Load a font using the provided font name and font size. | |
Parameters: | |
font_name (str): The name of the font to load. Can be a font name recognized by the system, a URL to download the font file, | |
a local file path, or a Hugging Face model hub identifier. | |
font_size (int, optional): The size of the font. Default is 16. | |
Returns: | |
ImageFont.FreeTypeFont: The loaded font object. | |
Notes: | |
This function attempts to load the font using various methods until a suitable font is found. If the provided font_name | |
cannot be loaded, it falls back to a default font. | |
The font_name can be one of the following: | |
- A font name recognized by the system, which can be loaded using ImageFont.truetype. | |
- A URL pointing to the font file, which is downloaded using requests and then loaded using ImageFont.truetype. | |
- A local file path to the font file, which is loaded using ImageFont.truetype. | |
- A Hugging Face model hub identifier, which downloads the font file from the Hugging Face model hub using hf_hub_download | |
and then loads it using ImageFont.truetype. | |
Example: | |
font = load_font("Arial.ttf", font_size=20) | |
""" | |
font = None | |
if not "http" in font_name: | |
try: | |
font = ImageFont.truetype(font_name, font_size) | |
except (FileNotFoundError, OSError): | |
print("Font not found. Using Hugging Face download..\n") | |
if font is None: | |
try: | |
font_path = ImageFont.truetype(hf_hub_download(repo_id=os.environ.get('SPACE_ID', ''), filename="assets/" + font_name, repo_type="space"), encoding="UTF-8") | |
font = ImageFont.truetype(font_path, font_size) | |
except (FileNotFoundError, OSError): | |
print("Font not found. Trying to download from local assets folder...\n") | |
if font is None: | |
try: | |
font = ImageFont.truetype("assets/" + font_name, font_size) | |
except (FileNotFoundError, OSError): | |
print("Font not found. Trying to download from URL...\n") | |
if font is None: | |
try: | |
req = requests.get(font_name) | |
font = ImageFont.truetype(BytesIO(req.content), font_size) | |
except (FileNotFoundError, OSError): | |
print(f"Font not found: {font_name} Using default font\n") | |
if font: | |
print(f"Font loaded {font.getname()}") | |
else: | |
font = ImageFont.load_default() | |
return font | |
def add_settings_to_image(title: str = "title", description: str = "", width: int = 768, height: int = 512, background_path: str = "", font: str = "arial.ttf", font_color: str = "#ffffff"): | |
# Create a new RGBA image with the specified dimensions | |
image = Image.new("RGBA", (width, height), (255, 255, 255, 0)) | |
# If a background image is specified, open it and paste it onto the image | |
if background_path == "": | |
background = Image.new("RGBA", (width, height), (255, 255, 255, 255)) | |
else: | |
background = Image.open(background_path).convert("RGBA") | |
#Convert font color to RGBA tuple | |
font_color = hex_to_rgba(font_color) | |
# Calculate the center coordinates for placing the text | |
text_x = width // 2 | |
text_y = height // 2 | |
# Draw the title text at the center top | |
title_font = load_font(font, 26) # Replace with your desired font and size | |
title_text = '\n'.join(textwrap.wrap(title, width // 12)) | |
title_x, title_y, title_text_width, title_text_height = title_font.getbbox(title_text) | |
title_x = max(text_x - (title_text_width // 2), title_x, 0) | |
title_y = text_y - (height // 2) + 10 # 10 pixels padding from the top | |
title_draw = ImageDraw.Draw(image) | |
title_draw.multiline_text((title_x, title_y), title, fill=font_color, font=title_font, align="center") | |
# Draw the description text two lines below the title | |
description_font = load_font(font, 16) # Replace with your desired font and size | |
description_text = '\n'.join(textwrap.wrap(description, width // 12)) | |
description_x, description_y, description_text_width, description_text_height = description_font.getbbox(description_text) | |
description_x = max(text_x - (description_text_width // 2), description_x, 0) | |
description_y = title_y + title_text_height + 20 # 20 pixels spacing between title and description | |
description_draw = ImageDraw.Draw(image) | |
description_draw.multiline_text((description_x, description_y), description_text, fill=font_color, font=description_font, align="center") | |
# Calculate the offset to center the image on the background | |
bg_w, bg_h = background.size | |
offset = ((bg_w - width) // 2, (bg_h - height) // 2) | |
# Paste the image onto the background | |
background.paste(image, offset, mask=image) | |
# Save the image and return the file path | |
return save_image(background) |