Spaces:
Running
Running
File size: 4,543 Bytes
4ee8f13 9e03ce7 4ee8f13 e5d8beb 4ee8f13 ad59171 e5d8beb 4ee8f13 e5d8beb ad59171 4ee8f13 ad59171 4ee8f13 9e03ce7 4ee8f13 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
import base64
import io
from functools import partial
import gradio as gr
import httpx
from const import CSS, FOOTER, HEADER, MODELS, PLACEHOLDER
from openai import OpenAI
from PIL import Image
from cycloud.auth import load_default_credentials
def get_headers(host: str) -> dict:
creds = load_default_credentials()
return {
"Authorization": f"Bearer {creds.access_token}",
"Host": host,
"Accept": "application/json",
"Content-Type": "application/json",
}
def proxy(request: httpx.Request, model_info: dict) -> httpx.Request:
request.url = request.url.copy_with(path=model_info["endpoint"])
request.headers.update(get_headers(host=model_info["host"].replace("https://", "")))
return request
def encode_image_with_pillow(image_path: str) -> str:
with Image.open(image_path) as img:
img.thumbnail((384, 384))
buffered = io.BytesIO()
img.convert("RGB").save(buffered, format="JPEG")
return base64.b64encode(buffered.getvalue()).decode("utf-8")
def call_chat_api(message, history, model_name):
if message["files"]:
if isinstance(message["files"], dict):
image = message["files"]["path"]
else:
image = message["files"][-1]
else:
for hist in history:
if isinstance(hist[0], tuple):
image = hist[0][0]
img_base64 = encode_image_with_pillow(image)
history_openai_format = [
{
"role": "user",
"content": [
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{img_base64}",
},
},
],
}
]
if len(history) == 0:
history_openai_format[0]["content"].append(
{"type": "text", "text": message["text"]}
)
else:
for human, assistant in history[1:]:
if len(history_openai_format) == 1:
history_openai_format[0]["content"].append(
{"type": "text", "text": human}
)
else:
history_openai_format.append({"role": "user", "content": human})
history_openai_format.append({"role": "assistant", "content": assistant})
history_openai_format.append({"role": "user", "content": message["text"]})
client = OpenAI(
api_key="",
base_url=MODELS[model_name]["host"],
http_client=httpx.Client(
event_hooks={
"request": [partial(proxy, model_info=MODELS[model_name])],
},
verify=False,
),
)
stream = client.chat.completions.create(
model=f"/data/cyberagent/{model_name}",
messages=history_openai_format,
temperature=0.2,
top_p=1.0,
max_tokens=1024,
stream=True,
extra_body={"repetition_penalty": 1.1},
)
message = ""
for chunk in stream:
content = chunk.choices[0].delta.content or ""
message = message + content
yield message
def run():
chatbot = gr.Chatbot(
elem_id="chatbot", placeholder=PLACEHOLDER, scale=1, height=700
)
chat_input = gr.MultimodalTextbox(
interactive=True,
file_types=["image"],
placeholder="Enter message or upload file...",
show_label=False,
)
with gr.Blocks(css=CSS) as demo:
gr.Markdown(HEADER)
with gr.Row():
model_selector = gr.Dropdown(
choices=MODELS.keys(),
value=list(MODELS.keys())[0],
label="Model",
)
gr.ChatInterface(
fn=call_chat_api,
stop_btn="Stop Generation",
examples=[
[
{
"text": "ใใฎ็ปๅใ่ฉณใใ่ชฌๆใใฆใใ ใใใ",
"files": ["./examples/cat.jpg"],
},
],
[
{
"text": "ใใฎๆ็ใฏใฉใใชๅณใใใใ่ฉณใใๆใใฆใใ ใใใ",
"files": ["./examples/takoyaki.jpg"],
},
],
],
multimodal=True,
textbox=chat_input,
chatbot=chatbot,
additional_inputs=[model_selector],
)
gr.Markdown(FOOTER)
demo.queue().launch(share=False)
if __name__ == "__main__":
run()
|