Spaces:
Running
Running
File size: 7,331 Bytes
a3c8eab 53a3cc2 a3c8eab 53a3cc2 a3c8eab 53a3cc2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 |
import gc
import os
import random
import numpy as np
import json
import torch
import uuid
from PIL import Image, PngImagePlugin
from datetime import datetime
from typing import Callable, Dict, Optional, Tuple, Any, List
from diffusers import (
DDIMScheduler,
DPMSolverMultistepScheduler,
DPMSolverSinglestepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
AutoencoderKL,
StableDiffusionXLPipeline,
)
import logging
MAX_SEED = np.iinfo(np.int32).max
def is_space_environment():
return "SPACE_ID" in os.environ and os.environ.get("SYSTEM") == "spaces"
def seed_everything(seed: int) -> torch.Generator:
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
generator = torch.Generator()
generator.manual_seed(seed)
return generator
def parse_aspect_ratio(aspect_ratio: str) -> Optional[Tuple[int, int]]:
if aspect_ratio == "Custom":
return None
width, height = aspect_ratio.split(" x ")
return int(width), int(height)
def aspect_ratio_handler(
aspect_ratio: str, custom_width: int, custom_height: int
) -> Tuple[int, int]:
if aspect_ratio == "Custom":
return custom_width, custom_height
else:
width, height = parse_aspect_ratio(aspect_ratio)
return width, height
def get_scheduler(scheduler_config: Dict, name: str) -> Optional[Callable]:
scheduler_factory_map = {
"DPM++ 2M Karras": lambda: DPMSolverMultistepScheduler.from_config(
scheduler_config, use_karras_sigmas=True
),
"DPM++ SDE Karras": lambda: DPMSolverSinglestepScheduler.from_config(
scheduler_config, use_karras_sigmas=True
),
"DPM++ 2M SDE Karras": lambda: DPMSolverMultistepScheduler.from_config(
scheduler_config, use_karras_sigmas=True, algorithm_type="sde-dpmsolver++"
),
"Euler": lambda: EulerDiscreteScheduler.from_config(scheduler_config),
"Euler a": lambda: EulerAncestralDiscreteScheduler.from_config(
scheduler_config
),
"DDIM": lambda: DDIMScheduler.from_config(scheduler_config),
}
return scheduler_factory_map.get(name, lambda: None)()
def free_memory() -> None:
"""Free up GPU and system memory."""
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
gc.collect()
def preprocess_prompt(
style_dict,
style_name: str,
positive: str,
negative: str = "",
add_style: bool = True,
) -> Tuple[str, str]:
p, n = style_dict.get(style_name, style_dict["(None)"])
if add_style and positive.strip():
formatted_positive = p.format(prompt=positive)
else:
formatted_positive = positive
combined_negative = n
if negative.strip():
if combined_negative:
combined_negative += ", " + negative
else:
combined_negative = negative
return formatted_positive, combined_negative
def common_upscale(
samples: torch.Tensor,
width: int,
height: int,
upscale_method: str,
) -> torch.Tensor:
return torch.nn.functional.interpolate(
samples, size=(height, width), mode=upscale_method
)
def upscale(
samples: torch.Tensor, upscale_method: str, scale_by: float
) -> torch.Tensor:
width = round(samples.shape[3] * scale_by)
height = round(samples.shape[2] * scale_by)
return common_upscale(samples, width, height, upscale_method)
def preprocess_image_dimensions(width, height):
if width % 8 != 0:
width = width - (width % 8)
if height % 8 != 0:
height = height - (height % 8)
return width, height
def save_image(image, metadata, output_dir, is_colab):
if is_colab:
current_time = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"image_{current_time}.png"
else:
filename = str(uuid.uuid4()) + ".png"
os.makedirs(output_dir, exist_ok=True)
filepath = os.path.join(output_dir, filename)
metadata_str = json.dumps(metadata)
info = PngImagePlugin.PngInfo()
info.add_text("parameters", metadata_str)
image.save(filepath, "PNG", pnginfo=info)
return filepath
def is_google_colab():
try:
import google.colab
return True
except:
return False
def load_pipeline(model_name: str, device: torch.device, hf_token: Optional[str] = None, vae: Optional[AutoencoderKL] = None) -> Any:
"""Load the Stable Diffusion pipeline."""
try:
logging.info(f"Loading pipeline from {model_name}...")
# Choose the right loading method based on file path or model ID
if os.path.exists(model_name) and os.path.isdir(model_name):
# It's a local directory path
if os.path.exists(os.path.join(model_name, "animagine-xl-4.0.safetensors")):
# Load from single file if it exists
pipe = StableDiffusionXLPipeline.from_single_file(
os.path.join(model_name, "animagine-xl-4.0.safetensors"),
torch_dtype=torch.float16,
use_safetensors=True,
custom_pipeline="lpw_stable_diffusion_xl",
add_watermarker=False
)
else:
# Load the VAE first to ensure it's not None
vae_path = os.path.join(model_name, "vae")
if vae is None and os.path.exists(vae_path):
logging.info(f"Loading VAE from {vae_path}...")
vae = AutoencoderKL.from_pretrained(vae_path, torch_dtype=torch.float16)
# Load pipeline from directory
pipe = StableDiffusionXLPipeline.from_pretrained(
model_name,
vae=vae,
torch_dtype=torch.float16,
use_safetensors=True,
custom_pipeline="lpw_stable_diffusion_xl",
add_watermarker=False
)
elif model_name.endswith(".safetensors"):
# It's a single file
pipe = StableDiffusionXLPipeline.from_single_file(
model_name,
torch_dtype=torch.float16,
use_safetensors=True,
custom_pipeline="lpw_stable_diffusion_xl",
add_watermarker=False
)
else:
# It's a Hugging Face model ID
pipe = StableDiffusionXLPipeline.from_pretrained(
model_name,
vae=vae,
token=hf_token,
torch_dtype=torch.float16,
use_safetensors=True,
custom_pipeline="lpw_stable_diffusion_xl",
add_watermarker=False
)
# デバイス移動の部分を修正
if "SPACE_ID" in os.environ and os.environ.get("SYSTEM") == "spaces":
# Stateless GPU環境ではデバイス移動を特別に扱う
return pipe
else:
# 通常の環境では以前のコードを使用
pipe.to(device)
return pipe
logging.info("Pipeline loaded successfully!")
return pipe
except Exception as e:
logging.error(f"Failed to load pipeline: {str(e)}", exc_info=True)
raise
|