Spaces:
Runtime error
Runtime error
File size: 26,968 Bytes
4330b89 52d75e0 a4ce7a8 616fc05 a4ce7a8 616fc05 248c53e 4330b89 616fc05 a4ce7a8 3715ad1 a4ce7a8 3715ad1 a4ce7a8 616fc05 a4ce7a8 616fc05 a4ce7a8 616fc05 a4ce7a8 616fc05 a4ce7a8 4330b89 2f12cdf 4330b89 f38d9ab 4330b89 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 |
import logging
import re
import time
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from peft import PeftModel
from threading import Thread
import gradio as gr
import gc
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# LoRA configurations
lora_configs = {
"Gemma-3-1B-Instruct-Vi-Medical-LoRA": {
"base_model": "unsloth/gemma-3-1b-it",
"lora_adapter": "danhtran2mind/Gemma-3-1B-Instruct-Vi-Medical-LoRA"
},
"Gemma-3-1B-GRPO-Vi-Medical-LoRA": {
"base_model": "unsloth/gemma-3-1b-it",
"lora_adapter": "danhtran2mind/Gemma-3-1B-GRPO-Vi-Medical-LoRA"
},
"Llama-3.2-3B-Instruct-Vi-Medical-LoRA": {
"base_model": "unsloth/Llama-3.2-3B-Instruct",
"lora_adapter": "danhtran2mind/Llama-3.2-3B-Instruct-Vi-Medical-LoRA"
},
"Llama-3.2-1B-Instruct-Vi-Medical-LoRA": {
"base_model": "unsloth/Llama-3.2-1B-Instruct",
"lora_adapter": "danhtran2mind/Llama-3.2-1B-Instruct-Vi-Medical-LoRA"
},
"Llama-3.2-3B-Reasoning-Vi-Medical-LoRA": {
"base_model": "unsloth/Llama-3.2-3B-Instruct",
"lora_adapter": "danhtran2mind/Llama-3.2-3B-Reasoning-Vi-Medical-LoRA"
},
"Qwen-3-0.6B-Instruct-Vi-Medical-LoRA": {
"base_model": "Qwen/Qwen3-0.6B",
"lora_adapter": "danhtran2mind/Qwen-3-0.6B-Instruct-Vi-Medical-LoRA"
},
"Qwen-3-0.6B-Reasoning-Vi-Medical-LoRA": {
"base_model": "Qwen/Qwen3-0.6B",
"lora_adapter": "danhtran2mind/Qwen-3-0.6B-Reasoning-Vi-Medical-LoRA"
}
}
# Model settings
MAX_INPUT_TOKEN_LENGTH = 4096
DEFAULT_MAX_NEW_TOKENS = 512
MAX_MAX_NEW_TOKENS = 2048
# Global model and tokenizer
model = None
tokenizer = None
current_model_id = None
# Prompt templates for each LoRA model
def case_1_prompt(messages):
"""Prompt style for Gemma-3-1B-Instruct-Vi-Medical-LoRA: Simple user prompt with chat template"""
return tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
tokenize=False
)
def case_2_prompt(messages):
"""Prompt style for Gemma-3-1B-GRPO-Vi-Medical-LoRA: System prompt with reasoning and answer format"""
SYSTEM_PROMPT = """
Trả lời theo định dạng sau đây:
<reasoning>
...
</reasoning>
<answer>
...
</answer>
"""
print("messages:##### ", messages)
# print("isinstance(messages, list): ", isinstance(messages, list))
# print('messages[0].get("role"): ', messages[0].get("role"))
if not messages or not isinstance(messages, list) or not messages[0].get("role") == "user":
return tokenizer.apply_chat_template(
[{"role": "system", "content": SYSTEM_PROMPT}, {"role": "user", "content": "Vui lòng cung cấp câu hỏi để tôi trả lời."}],
add_generation_prompt=True,
tokenize=False
)
conversation = [{"role": "system", "content": SYSTEM_PROMPT}]
for i, msg in enumerate(messages):
conversation.append(msg)
if msg["role"] == "user" and (i == len(messages) - 1 or messages[i + 1]["role"] != "assistant"):
conversation.append({"role": "assistant", "content": ""})
return tokenizer.apply_chat_template(
conversation,
add_generation_prompt=True,
tokenize=False
)
def case_3_prompt(messages):
"""Prompt style for Llama-3.2-3B-Instruct-Vi-Medical-LoRA: Extract answer from context"""
instruction = '''Bạn là một trợ lý hữu ích được giao nhiệm vụ trích xuất các đoạn văn trả lời câu hỏi của người dùng từ một ngữ cảnh cho trước. Xuất ra các đoạn văn chính xác từng từ một trả lời câu hỏi của người dùng. Không xuất ra bất kỳ văn bản nào khác ngoài các đoạn văn trong ngữ cảnh. Xuất ra lượng tối thiểu để trả lời câu hỏi, ví dụ chỉ 2-3 từ từ đoạn văn. Nếu không thể tìm thấy câu trả lời trong ngữ cảnh, xuất ra 'Ngữ cảnh không cung cấp câu trả lời...' '''
return tokenizer.apply_chat_template(
[{"role": "system", "content": instruction}] + messages,
add_generation_prompt=True,
tokenize=False
)
def case_4_prompt(messages):
"""Prompt style for Llama-3.2-1B-Instruct-Vi-Medical-LoRA: Same as Llama-3.2-3B-Instruct-Vi-Medical-LoRA"""
return case_3_prompt(messages)
def case_5_prompt(question):
"""Prompt style for Llama-3.2-3B-Reasoning-Vi-Medical-LoRA: Reasoning prompt with think tag"""
inference_prompt_style = """Bên dưới là một hướng dẫn mô tả một tác vụ, đi kèm với một thông tin đầu vào để cung cấp thêm ngữ cảnh.
Hãy viết một phản hồi để hoàn thành yêu cầu một cách phù hợp.
Trước khi trả lời, hãy suy nghĩ cẩn thận về câu hỏi và tạo một chuỗi suy nghĩ từng bước để đảm bảo phản hồi logic và chính xác.
### Instruction:
Bạn là một chuyên gia y tế có kiến thức chuyên sâu về lập luận lâm sàng, chẩn đoán và lập kế hoạch điều trị.
Vui lòng trả lời câu hỏi y tế sau đây.
### Question:
{}
### Response:
<think>
"""
return inference_prompt_style.format(question) + tokenizer.eos_token
def case_6_prompt(messages):
"""Prompt style for Qwen-3-0.6B-Instruct-Vi-Medical-LoRA: Qwen-specific with enable_thinking=False"""
return tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
tokenize=False,
enable_thinking=False
)
def case_7_prompt(question):
"""Prompt style for Qwen-3-0.6B-Reasoning-Vi-Medical-LoRA: Same as Llama-3.2-3B-Reasoning-Vi-Medical-LoRA"""
return case_5_prompt(question)
# Map LoRA configuration names to prompt functions
prompt_functions = {
"Gemma-3-1B-Instruct-Vi-Medical-LoRA": case_1_prompt,
"Gemma-3-1B-GRPO-Vi-Medical-LoRA": case_2_prompt,
"Llama-3.2-3B-Instruct-Vi-Medical-LoRA": case_3_prompt,
"Llama-3.2-1B-Instruct-Vi-Medical-LoRA": case_4_prompt,
"Llama-3.2-3B-Reasoning-Vi-Medical-LoRA": case_5_prompt,
"Qwen-3-0.6B-Instruct-Vi-Medical-LoRA": case_6_prompt,
"Qwen-3-0.6B-Reasoning-Vi-Medical-LoRA": case_7_prompt
}
def load_model(model_id, chatbot_state):
"""Load the model, tokenizer, and apply LoRA adapter for the given model ID."""
global model, tokenizer, current_model_id
try:
logger.info(f"Loading model: {model_id}")
print(f"Changing to model: {model_id}")
if model is not None:
print("Clearing previous model from RAM/VRAM...")
del model
del tokenizer
model = None
tokenizer = None
gc.collect()
torch.cuda.empty_cache() if torch.cuda.is_available() else None
print("Memory cleared successfully.")
if model_id not in lora_configs:
raise ValueError(f"Invalid model ID: {model_id}")
base_model_name = lora_configs[model_id]["base_model"]
lora_adapter_name = lora_configs[model_id]["lora_adapter"]
tokenizer = AutoTokenizer.from_pretrained(
base_model_name,
trust_remote_code=True
)
tokenizer.use_default_system_prompt = False
if tokenizer.pad_token is None or tokenizer.pad_token == tokenizer.eos_token:
tokenizer.pad_token = tokenizer.unk_token or "<pad>"
logger.info(f"Set pad_token to {tokenizer.pad_token}")
model = AutoModelForCausalLM.from_pretrained(
base_model_name,
torch_dtype=torch.float16,
device_map="auto",
trust_remote_code=True
)
model = PeftModel.from_pretrained(model, lora_adapter_name)
model.eval()
model.config.pad_token_id = tokenizer.pad_token_id
current_model_id = model_id
chatbot_state = []
return f"Successfully loaded model: {model_id} with LoRA adapter {lora_adapter_name}", chatbot_state
except Exception as e:
logger.error(f"Failed to load model or tokenizer: {str(e)}")
return f"Error: Failed to load model {model_id}: {str(e)}", chatbot_state
def format_time(seconds_float):
total_seconds = int(round(seconds_float))
hours = total_seconds // 3600
remaining_seconds = total_seconds % 3600
minutes = remaining_seconds // 60
seconds = remaining_seconds % 60
if hours > 0:
return f"{hours}h {minutes}m {seconds}s"
elif minutes > 0:
return f"{minutes}m {seconds}s"
else:
return f"{seconds}s"
DESCRIPTION = '''
<h1><span class="intro-icon">⚕️</span> Medical Chatbot with LoRA Models</h1>
<h2>AI-Powered Medical Insights</h2>
<div class="intro-highlight">
<strong>Explore our advanced models, fine-tuned with LoRA for medical reasoning in Vietnamese.</strong>
</div>
<div class="intro-disclaimer">
<strong><span class="intro-icon">ℹ️</span> Notice:</strong> For research purposes only. AI responses may have limitations due to development, datasets, and architecture. <strong>Always consult a medical professional for health advice 🩺</strong>.
</div>
'''
CSS = """
.intro-container {
max-width: 800px;
padding: 40px;
background: #ffffff;
border-radius: 15px;
box-shadow: 0 4px 20px rgba(0, 0, 0, 0.1);
text-align: center;
animation: fadeIn 1s ease-in-out;
}
h1 {
font-size: 1.5em;
color: #007bff;
text-transform: uppercase;
letter-spacing: 1px;
margin-bottom: 20px;
}
h2 {
font-size: 1.3em;
color: #555555;
margin-bottom: 30px;
}
.intro-highlight {
font-size: 1.5em;
color: #333333;
margin: 20px 0;
padding: 20px;
background: #f8f9fa;
border-left: 5px solid #007bff;
border-radius: 10px;
transition: transform 0.3s ease;
}
.intro-highlight:hover {
transform: scale(1.02);
}
.intro-disclaimer {
font-size: 1.3em;
color: #333333;
background: #e9ecef;
padding: 20px;
border-radius: 10px;
border: 1px solid #007bff;
margin-top: 30px;
}
strong {
color: #007bff;
font-weight: bold;
}
.intro-icon {
font-size: 1.4em;
margin-right: 8px;
}
@keyframes fadeIn {
0% { opacity: 0; transform: translateY(-20px); }
100% { opacity: 1; transform: translateY(0); }
}
.spinner {
animation: spin 1s linear infinite;
display: inline-block;
margin-right: 8px;
}
@keyframes spin {
from { transform: rotate(0deg); }
to { transform: rotate(360deg); }
}
.thinking-summary {
cursor: pointer;
padding: 8px;
background: #f5f5f5;
border-radius: 4px;
margin: 4px 0;
}
.thought-content {
padding: 10px;
background: none;
border-radius: 4px;
margin: 5px 0;
}
.thinking-container {
border-left: 3px solid #facc15;
padding-left: 10px;
margin: 8px 0;
background: none;
}
.thinking-container:empty {
background: #e0e0e0;
}
details:not([open]) .thinking-container {
border-left-color: #290c15;
}
details {
border: 1px solid #e0e0e0 !important;
border-radius: 8px !important;
padding: 12px !important;
margin: 8px 0 !important;
transition: border-color 0.2s;
}
.think-section {
background-color: #e6f3ff;
border-left: 4px solid #4a90e2;
padding: 15px;
margin: 10px 0;
border-radius: 6px;
font-size: 14px;
}
.final-answer {
background-color: #f0f4f8;
border-left: 4px solid #2ecc71;
padding: 15px;
margin: 10px 0;
border-radius: 6px;
font-size: 14px;
}
#output-container {
position: relative;
}
.copy-button {
position: absolute;
top: 10px;
right: 10px;
padding: 5px 10px;
background-color: #4a90e2;
color: white;
border: none;
border-radius: 4px;
cursor: pointer;
}
.copy-button:hover {
background-color: #357abd;
}
"""
JS_SCRIPTS = """
<script>
function copyToClipboard(elementId) {
const element = document.getElementById(elementId);
let text = element.innerText.replace(/^Thinking Process:\\n|^Final Answer:\\n/, '');
text = text.replace(/\\mjx-[^\\s]+/g, '');
navigator.clipboard.writeText(text).then(() => {
alert('Copied to clipboard!');
}).catch(err => {
console.error('Failed to copy: ', err);
});
}
</script>
<style>
.chatbot .message.assistant {
position: relative;
}
.chatbot .message.assistant::after {
content: 'Copy';
position: absolute;
top: 10px;
right: 10px;
padding: 5px 10px;
background-color: #4a90e2;
color: white;
border: none;
border-radius: 4px;
cursor: pointer;
}
.chatbot .message.assistant:hover::after {
background-color: #357abd;
}
</style>
"""
def user(message, history):
if not isinstance(history, list):
history = []
return "", history + [[message, None]]
class ParserState:
__slots__ = ['answer', 'thought', 'in_think', 'in_answer', 'start_time', 'last_pos', 'total_think_time']
def __init__(self):
self.answer = ""
self.thought = ""
self.in_think = False
self.in_answer = False
self.start_time = 0
self.last_pos = 0
self.total_think_time = 0.0
def parse_response(text, state):
buffer = text[state.last_pos:]
state.last_pos = len(text)
while buffer:
if not state.in_think and not state.in_answer:
think_start = buffer.find('<think>')
reasoning_start = buffer.find('<reasoning>')
answer_start = buffer.find('<answer>')
starts = []
if think_start != -1:
starts.append((think_start, '<think>', 7, 'think'))
if reasoning_start != -1:
starts.append((reasoning_start, '<reasoning>', 11, 'think'))
if answer_start != -1:
starts.append((answer_start, '<answer>', 8, 'answer'))
if not starts:
state.answer += buffer
break
start_pos, start_tag, tag_length, mode = min(starts, key=lambda x: x[0])
state.answer += buffer[:start_pos]
if mode == 'think':
state.in_think = True
state.start_time = time.perf_counter()
else:
state.in_answer = True
buffer = buffer[start_pos + tag_length:]
elif state.in_think:
think_end = buffer.find('</think>')
reasoning_end = buffer.find('</reasoning>')
ends = []
if think_end != -1:
ends.append((think_end, '</think>', 8))
if reasoning_end != -1:
ends.append((reasoning_end, '</reasoning>', 12))
if ends:
end_pos, end_tag, tag_length = min(ends, key=lambda x: x[0])
state.thought += buffer[:end_pos]
duration = time.perf_counter() - state.start_time
state.total_think_time += duration
state.in_think = False
buffer = buffer[end_pos + tag_length:]
if end_tag == '</reasoning>':
state.answer += buffer
break
else:
state.thought += buffer
break
elif state.in_answer:
answer_end = buffer.find('</answer>')
if answer_end != -1:
state.answer += buffer[:answer_end]
state.in_answer = False
buffer = buffer[answer_end + 9:]
else:
state.answer += buffer
break
elapsed = time.perf_counter() - state.start_time if state.in_think else 0
return state, elapsed
def format_response(state, elapsed):
answer_part = state.answer
collapsible = []
collapsed = "<details open>"
if state.thought or state.in_think:
if state.in_think:
total_elapsed = state.total_think_time + elapsed
formatted_time = format_time(total_elapsed)
status = f"💭 Thinking for {formatted_time}"
else:
formatted_time = format_time(state.total_think_time)
status = f"✅ Thought for {formatted_time}"
collapsed = "<details>"
collapsible.append(
f"{collapsed}<summary>{status}</summary>\n\n<div class='thinking-container'>\n{state.thought}\n</div>\n</details>"
)
# print("collapsible: ", collapsible)
# print("answer_part: ", answer_part)
return collapsible, answer_part
def remove_tags(text):
if text is None:
return None
return re.sub(r'<[^>]+>', ' ', text).strip()
def generate_response(history, temperature, top_p, top_k, max_tokens, seed, active_gen, model_id, auto_clear):
global model, tokenizer, current_model_id
if auto_clear:
history = [history[-1]]
# Apply the function to the second element of each sublist
history = [[item[0], remove_tags(item[1])] for item in history]
try:
if not history or not isinstance(history, list):
logger.error("History is empty or not a list")
history = [[None, "Error: Conversation history is empty or invalid"]]
yield history
return
if not isinstance(history[-1], (list, tuple)) or len(history[-1]) < 1 or not history[-1][0]:
logger.error("Last history entry is invalid or missing user message")
history = history[:-1] + [[history[-1][0] if history else None, "Error: No valid user message provided"]]
yield history
return
if model is None or tokenizer is None or model_id != current_model_id:
status, history = load_model(model_id, history)
if "Error" in status:
logger.error(status)
history[-1][1] = status
yield history
return
torch.manual_seed(int(seed))
if torch.cuda.is_available():
torch.cuda.manual_seed(int(seed))
torch.cuda.manual_seed_all(int(seed))
if model_id not in prompt_functions:
logger.error(f"No prompt function defined for model_id: {model_id}")
history[-1][1] = f"Error: No prompt function defined for model {model_id}"
yield history
return
prompt_fn = prompt_functions[model_id]
if model_id in [
"Llama-3.2-3B-Reasoning-Vi-Medical-LoRA",
"Qwen-3-0.6B-Reasoning-Vi-Medical-LoRA"
]:
text = prompt_fn(history[-1][0])
inputs = tokenizer(
[text],
return_tensors="pt",
padding=True,
truncation=True,
max_length=MAX_INPUT_TOKEN_LENGTH
)
else:
conversation = []
for msg in history:
if msg[0]:
conversation.append({"role": "user", "content": msg[0]})
if msg[1]:
clean_text = ' '.join(line for line in msg[1].split('\n') if not line.startswith('✅ Thought for')).strip()
conversation.append({"role": "assistant", "content": clean_text})
elif msg[0] and not msg[1]:
conversation.append({"role": "assistant", "content": ""})
if not conversation:
logger.error("No valid messages in conversation history")
history[-1][1] = "Error: No valid messages in conversation history"
yield history
return
if model_id in [
"Gemma-3-1B-GRPO-Vi-Medical-LoRA"
]:
conversation= conversation[-2:]
text = prompt_fn(conversation)
tokenizer_kwargs = {
"return_tensors": "pt",
"padding": True,
"truncation": True,
"max_length": MAX_INPUT_TOKEN_LENGTH
}
inputs = tokenizer(text, **tokenizer_kwargs)
if inputs is None or "input_ids" not in inputs:
logger.error("Tokenizer returned invalid or None output")
history[-1][1] = "Error: Failed to tokenize input"
yield history
return
input_ids = inputs["input_ids"].to(model.device)
attention_mask = inputs.get("attention_mask").to(model.device) if "attention_mask" in inputs else None
generate_kwargs = {
"input_ids": input_ids,
"attention_mask": attention_mask,
"max_new_tokens": max_tokens,
"do_sample": True,
"temperature": temperature,
"top_p": top_p,
"top_k": top_k,
"num_beams": 1,
"repetition_penalty": 1.0,
"pad_token_id": tokenizer.pad_token_id,
"eos_token_id": tokenizer.eos_token_id,
"use_cache": True,
"cache_implementation": "dynamic",
}
streamer = TextIteratorStreamer(tokenizer, timeout=360.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs["streamer"] = streamer
def run_generation():
try:
model.generate(**generate_kwargs)
except Exception as e:
logger.error(f"Generation failed: {str(e)}")
raise
thread = Thread(target=run_generation)
thread.start()
state = ParserState()
if model_id in [
"Llama-3.2-3B-Reasoning-Vi-Medical-LoRA",
"Qwen-3-0.6B-Reasoning-Vi-Medical-LoRA"
]:
full_response = "<think>"
else:
full_response = ""
for text in streamer:
if not active_gen[0]:
logger.info("Generation stopped by user")
break
if text:
logger.debug(f"Raw streamer output: {text}")
text = re.sub(r'<\|\w+\|>', '', text)
full_response += text
state, elapsed = parse_response(full_response, state)
collapsible, answer_part = format_response(state, elapsed)
history[-1][1] = "\n\n".join(collapsible + [answer_part])
yield history
else:
logger.debug("Streamer returned empty text")
thread.join()
thread = None
state, elapsed = parse_response(full_response, state)
collapsible, answer_part = format_response(state, elapsed)
history[-1][1] = "\n\n".join(collapsible + [answer_part])
if not full_response:
logger.warning("No response generated by model")
history[-1][1] = "No response generated. Please try again or select a different model."
print("full_response: ", full_response)
yield history
except Exception as e:
logger.error(f"Error in generate: {str(e)}")
if not history or not isinstance(history, list):
history = [[None, f"Error: {str(e)}. Please try again or select a different model."]]
else:
history[-1][1] = f"Error: {str(e)}. Please try again or select a different model."
yield history
finally:
active_gen[0] = False
MODEL_IDS = list(lora_configs.keys())
load_model(MODEL_IDS[0], [])
with gr.Blocks(css=CSS, theme=gr.themes.Default()) as demo:
# gr.Markdown(DESCRIPTION)
gr.HTML(DESCRIPTION)
gr.HTML(JS_SCRIPTS)
active_gen = gr.State([False])
chatbot = gr.Chatbot(
elem_id="chatbot",
height=500,
show_label=False,
render_markdown=True
)
with gr.Row():
msg = gr.Textbox(
label="Message",
placeholder="Type your medical query in Vietnamese...",
container=False,
scale=4
)
submit_btn = gr.Button("Send", variant='primary', scale=1)
with gr.Column(scale=2):
with gr.Row():
clear_btn = gr.Button("Clear", variant='secondary')
stop_btn = gr.Button("Stop", variant='stop')
with gr.Accordion("Parameters", open=False):
model_dropdown = gr.Dropdown(
choices=MODEL_IDS,
value=MODEL_IDS[0],
label="Select Model",
interactive=True
)
temperature = gr.Slider(minimum=0.1, maximum=1.5, value=0.7, label="Temperature")
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, label="Top-p")
top_k = gr.Slider(minimum=1, maximum=100, value=64, step=1, label="Top-k")
max_tokens = gr.Slider(minimum=128, maximum=4084, value=512, step=32, label="Max Tokens")
seed = gr.Slider(minimum=0, maximum=2 ** 32, value=42, step=1, label="Random Seed")
auto_clear = gr.Checkbox(label="Auto Clear History", value=True, info="Clears internal conversation history after each response but keeps displayed messages.")
gr.Examples(
examples=[
["Khi nghi ngờ bị loét dạ dày tá tràng nên đến khoa nào tại bệnh viện để thăm khám?"],
["Triệu chứng của loét dạ dày tá tràng là gì?"],
["Tôi bị mất ngủ, tôi phải làm gì?"],
["Tôi bị trĩ, tôi có nên mổ không?"]
],
inputs=msg,
label="Example Medical Queries"
)
model_load_output = gr.Textbox(label="Model Load Status")
model_dropdown.change(
fn=load_model,
inputs=[model_dropdown, chatbot],
outputs=[model_load_output, chatbot]
)
submit_event = submit_btn.click(
user, [msg, chatbot], [msg, chatbot], queue=False
).then(
lambda: [True], outputs=active_gen
).then(
generate_response, [chatbot, temperature, top_p, top_k, max_tokens, seed, active_gen, model_dropdown, auto_clear], chatbot
)
msg.submit(
user, [msg, chatbot], [msg, chatbot], queue=False
).then(
lambda: [True], outputs=active_gen
).then(
generate_response, [chatbot, temperature, top_p, top_k, max_tokens, seed, active_gen, model_dropdown, auto_clear], chatbot
)
stop_btn.click(
lambda: [False], None, active_gen, cancels=[submit_event]
)
clear_btn.click(lambda: None, None, chatbot, queue=False)
if __name__ == "__main__":
try:
demo.launch(server_name="0.0.0.0", server_port=7860)
except Exception as e:
logger.error(f"Failed to launch Gradio app: {str(e)}")
raise |