Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,094 Bytes
b22b80e 1483ea1 b22b80e 9c2430d b22b80e e4f4963 9c2430d b22b80e a2139ac b6ec892 3e4f76c a2139ac b22b80e 1483ea1 9c2430d 1483ea1 9c2430d 51bd381 d03b917 51bd381 9c2430d 01057fd ead58e3 01057fd ead58e3 01057fd ead58e3 01057fd ead58e3 01057fd 64b6943 4d2f992 eb41639 4d2f992 a2139ac f0aac12 a2139ac 60ddd89 3e4f76c ead58e3 a2139ac 60ddd89 a2139ac 01057fd 7819338 a2139ac eb41639 ead58e3 a2139ac 9c2430d b22b80e 9c2430d b22b80e 01057fd b22b80e 9c2430d b22b80e 120e997 b22b80e 01057fd ead58e3 120e997 01057fd b22b80e 120e997 ead58e3 9c2430d 120e997 9c2430d ead58e3 9c2430d 1483ea1 9c2430d 01057fd 7ff775d 01057fd ead58e3 b22b80e 9c2430d b22b80e eb41639 51bd381 f0aac12 b22b80e 9c2430d 51bd381 b22b80e 9c2430d f0aac12 9c2430d b22b80e 9c2430d b22b80e f0aac12 b22b80e ead58e3 b22b80e 9c2430d 4d2f992 9c2430d eb41639 b22b80e 9c2430d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
import gradio as gr
import numpy as np
import random
import json
from PIL import Image
import spaces
from http import HTTPStatus
from urllib.parse import urlparse, unquote
from pathlib import PurePosixPath
import requests
import os
from diffusers import DiffusionPipeline
import torch
model_name = "Qwen/Qwen-Image"
pipe = DiffusionPipeline.from_pretrained(model_name, torch_dtype=torch.bfloat16)
pipe.to('cuda')
MAX_SEED = np.iinfo(np.int32).max
#MAX_IMAGE_SIZE = 1440
examples = json.loads(open("examples.json").read())
aspect_ratios = {
"FHD 1080, aspect 1:1": (1080, 1080),
"FHD 1080, aspect 16:9": (1920, 1080),
"FHD 1080, aspect 9:16": (1080, 1920),
"FHD 1080, aspect 4:3": (1440, 1080),
"FHD 1080, aspect 3:4": (1080, 1440),
"HD 720, aspect 1:1": (720, 720),
"HD 720, aspect 16:9": (1280, 720),
"HD 720, aspect 9:16": (720, 1280),
"HD 720, aspect 4:3": (960, 720),
"HD 720, aspect 3:4": (720, 960),
"SD 480, aspect 1:1": (480, 480),
"SD 480, aspect 16:9": (854, 480),
"SD 480, aspect 9:16": (480, 854),
"SD 480, aspect 4:3": (640, 480),
"SD 480, aspect 3:4": (480, 640),
}
def sanitize_seed(seed):
"""
Validate and clamp a seed to int32 max. Returns 0 if invalid.
Rules:
- Accept int-like values (ints, numeric strings).
- Must be an integer >= 0 and <= MAX_SEED.
- Otherwise return 0.
"""
# Try to coerce from strings/floats that represent integers
try:
# Handle strings or floats that are integer-valued
if isinstance(seed, str):
seed = seed.strip()
if seed == "":
return -1
seed_int = int(seed, 10)
elif isinstance(seed, (int, np.integer)):
seed_int = int(seed)
elif isinstance(seed, float) and seed.is_integer():
seed_int = int(seed)
else:
return -1
except (ValueError, TypeError):
return -1
if 0 <= seed_int <= MAX_SEED:
return seed_int
return -1
def polish_prompt_en(original_prompt):
SYSTEM_PROMPT = open("improve_prompt.txt").read()
original_prompt = original_prompt.strip()
prompt = f"{SYSTEM_PROMPT}\n\nUser Input: {original_prompt}\n\n Rewritten Prompt:"
success=False
while not success:
try:
polished_prompt = api(prompt, model='qwen-plus')
polished_prompt = polished_prompt.strip()
polished_prompt = polished_prompt.replace("\n", " ")
success = True
except Exception as e:
print(f"Error during API call: {e}")
return polished_prompt
@spaces.GPU(duration=90)
def infer(
prompt,
negative_prompt=" ",
seed=42,
aspect_ratio="SD 480, aspect 3:4",
guidance_scale=4,
num_inference_steps=50,
progress=gr.Progress(track_tqdm=True),
):
print(f"Generating for prompt: \n\t{prompt}\n\t{seed}\n\t{aspect_ratio}\n\t{num_inference_steps}")
seed = sanitize_seed(seed)
if seed == -1:
seed = random.randint(0, MAX_SEED)
try:
width, height = aspect_ratios[aspect_ratio]
except:
width, height = (640, 480)
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
width=width,
height=height,
num_inference_steps=num_inference_steps,
true_cfg_scale=guidance_scale,
generator=torch.Generator(device="cuda").manual_seed(seed)
).images[0]
return image, seed
css = """
#col-container {
margin: 0 auto;
max-width: 1920px;
}
"""
with gr.Blocks(css=css) as demo:
prompt = gr.Text(
label="Prompt",
show_label=False,
placeholder="Enter your prompt",
container=False,
render=False,
)
result = gr.Image(label="Result", render=False)
seed_output = gr.Textbox(label="Used seed", lines=1, render=False)
with gr.Column(elem_id="col-container"):
with gr.Row():
gr.Markdown("HINT: Use smaller image size for testing, will consume less of your free GPU time!")
with gr.Row():
gr.Examples(examples=examples, inputs=[prompt], outputs=[result, seed_output], fn=infer, examples_per_page=25, cache_examples=False, cache_mode="lazy")
with gr.Row():
prompt.render()
run_button = gr.Button("Generate", scale=0, variant="primary")
result.render()
seed_output.render()
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
visible=True,
)
seed = gr.Textbox(
lines=1,
label="Manual seed",
info="Manual seed, otherwise random."
)
with gr.Row():
aspect_ratio = gr.Dropdown(
label="Image size (aprox.)",
choices=list(aspect_ratios.keys()),
value="SD 480, aspect 3:4",
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=7.5,
step=0.1,
value=4.5,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=30,
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
prompt,
negative_prompt,
seed,
aspect_ratio,
guidance_scale,
num_inference_steps,
],
outputs=[result, seed_output],
)
if __name__ == "__main__":
demo.launch() |