import gradio as gr import numpy as np import random import json from PIL import Image import spaces from http import HTTPStatus from urllib.parse import urlparse, unquote from pathlib import PurePosixPath import requests import os from diffusers import DiffusionPipeline import torch model_name = "Qwen/Qwen-Image" pipe = DiffusionPipeline.from_pretrained(model_name, torch_dtype=torch.bfloat16) pipe.to('cuda') MAX_SEED = np.iinfo(np.int32).max #MAX_IMAGE_SIZE = 1440 examples = json.loads(open("examples.json").read()) aspect_ratios = { "FHD 1080, aspect 1:1": (1080, 1080), "FHD 1080, aspect 16:9": (1920, 1080), "FHD 1080, aspect 9:16": (1080, 1920), "FHD 1080, aspect 4:3": (1440, 1080), "FHD 1080, aspect 3:4": (1080, 1440), "HD 720, aspect 1:1": (720, 720), "HD 720, aspect 16:9": (1280, 720), "HD 720, aspect 9:16": (720, 1280), "HD 720, aspect 4:3": (960, 720), "HD 720, aspect 3:4": (720, 960), "SD 480, aspect 1:1": (480, 480), "SD 480, aspect 16:9": (854, 480), "SD 480, aspect 9:16": (480, 854), "SD 480, aspect 4:3": (640, 480), "SD 480, aspect 3:4": (480, 640), } def sanitize_seed(seed): """ Validate and clamp a seed to int32 max. Returns 0 if invalid. Rules: - Accept int-like values (ints, numeric strings). - Must be an integer >= 0 and <= MAX_SEED. - Otherwise return 0. """ # Try to coerce from strings/floats that represent integers try: # Handle strings or floats that are integer-valued if isinstance(seed, str): seed = seed.strip() if seed == "": return -1 seed_int = int(seed, 10) elif isinstance(seed, (int, np.integer)): seed_int = int(seed) elif isinstance(seed, float) and seed.is_integer(): seed_int = int(seed) else: return -1 except (ValueError, TypeError): return -1 if 0 <= seed_int <= MAX_SEED: return seed_int return -1 def polish_prompt_en(original_prompt): SYSTEM_PROMPT = open("improve_prompt.txt").read() original_prompt = original_prompt.strip() prompt = f"{SYSTEM_PROMPT}\n\nUser Input: {original_prompt}\n\n Rewritten Prompt:" success=False while not success: try: polished_prompt = api(prompt, model='qwen-plus') polished_prompt = polished_prompt.strip() polished_prompt = polished_prompt.replace("\n", " ") success = True except Exception as e: print(f"Error during API call: {e}") return polished_prompt @spaces.GPU(duration=90) def infer( prompt, negative_prompt=" ", seed=42, aspect_ratio="SD 480, aspect 3:4", guidance_scale=4, num_inference_steps=50, progress=gr.Progress(track_tqdm=True), ): print(f"Generating for prompt: \n\t{prompt}\n\t{seed}\n\t{aspect_ratio}\n\t{num_inference_steps}") seed = sanitize_seed(seed) if seed == -1: seed = random.randint(0, MAX_SEED) try: width, height = aspect_ratios[aspect_ratio] except: width, height = (640, 480) image = pipe( prompt=prompt, negative_prompt=negative_prompt, width=width, height=height, num_inference_steps=num_inference_steps, true_cfg_scale=guidance_scale, generator=torch.Generator(device="cuda").manual_seed(seed) ).images[0] return image, seed css = """ #col-container { margin: 0 auto; max-width: 1920px; } """ with gr.Blocks(css=css) as demo: prompt = gr.Text( label="Prompt", show_label=False, placeholder="Enter your prompt", container=False, render=False, ) result = gr.Image(label="Result", render=False) seed_output = gr.Textbox(label="Used seed", lines=1, render=False) with gr.Column(elem_id="col-container"): with gr.Row(): gr.Markdown("HINT: Use smaller image size for testing, will consume less of your free GPU time!") with gr.Row(): gr.Examples(examples=examples, inputs=[prompt], outputs=[result, seed_output], fn=infer, examples_per_page=25, cache_examples=False, cache_mode="lazy") with gr.Row(): prompt.render() run_button = gr.Button("Generate", scale=0, variant="primary") result.render() seed_output.render() with gr.Accordion("Advanced Settings", open=False): negative_prompt = gr.Text( label="Negative prompt", max_lines=1, placeholder="Enter a negative prompt", visible=True, ) seed = gr.Textbox( lines=1, label="Manual seed", info="Manual seed, otherwise random." ) with gr.Row(): aspect_ratio = gr.Dropdown( label="Image size (aprox.)", choices=list(aspect_ratios.keys()), value="SD 480, aspect 3:4", ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance scale", minimum=0.0, maximum=7.5, step=0.1, value=4.5, ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=50, step=1, value=30, ) gr.on( triggers=[run_button.click, prompt.submit], fn=infer, inputs=[ prompt, negative_prompt, seed, aspect_ratio, guidance_scale, num_inference_steps, ], outputs=[result, seed_output], ) if __name__ == "__main__": demo.launch()