File size: 4,776 Bytes
b22b80e
 
 
1483ea1
b22b80e
9c2430d
b22b80e
e4f4963
9c2430d
 
 
 
 
b22b80e
a2139ac
 
 
 
 
b6ec892
3e4f76c
a2139ac
b22b80e
1483ea1
9c2430d
1483ea1
9c2430d
 
 
 
c2da0de
9c2430d
c2da0de
9c2430d
c2da0de
9c2430d
c2da0de
9c2430d
c2da0de
9c2430d
c2da0de
9c2430d
c2da0de
4d2f992
 
a2139ac
 
 
 
 
 
 
 
 
95ab993
a2139ac
 
c2da0de
a2139ac
 
 
c2da0de
7819338
a2139ac
 
 
 
c2da0de
 
 
a2139ac
 
 
 
 
 
 
9c2430d
b22b80e
 
9c2430d
b22b80e
 
 
 
 
9c2430d
 
 
b22b80e
 
 
 
 
 
9c2430d
b22b80e
9c2430d
 
8acf762
9c2430d
b22b80e
9c2430d
c2da0de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c2430d
c2da0de
9c2430d
b22b80e
9c2430d
c2da0de
9c2430d
 
b22b80e
9c2430d
b22b80e
9c2430d
 
 
 
 
 
 
 
b22b80e
9c2430d
b22b80e
 
 
1483ea1
b22b80e
 
e4f4963
b22b80e
9c2430d
4d2f992
9c2430d
 
 
 
 
 
 
 
 
 
b22b80e
 
9c2430d
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import gradio as gr
import numpy as np
import random
import json

from PIL import Image

import spaces
from http import HTTPStatus
from urllib.parse import urlparse, unquote
from pathlib import PurePosixPath
import requests
import os

from diffusers import DiffusionPipeline
import torch

model_name = "Qwen/Qwen-Image"

pipe = DiffusionPipeline.from_pretrained(model_name, torch_dtype=torch.bfloat16)
pipe.to('cuda')

MAX_SEED = np.iinfo(np.int32).max
#MAX_IMAGE_SIZE = 1440

examples = json.loads(open("examples.json").read())

# (1664, 928), (1472, 1140), (1328, 1328)
def get_image_size(aspect_ratio):
    if aspect_ratio == "1:1":
        return 1328, 1328
    elif aspect_ratio == "16:9":
        return 1664, 928
    elif aspect_ratio == "9:16":
        return 928, 1664
    elif aspect_ratio == "4:3":
        return 1472, 1140
    elif aspect_ratio == "3:4":
        return 1140, 1472
    else:
        return 1328, 1328

@spaces.GPU(duration=60)

def infer(
    prompt,
    negative_prompt=" ",
    seed=42,
    randomize_seed=False,
    aspect_ratio="16:9",
    guidance_scale=4,
    num_inference_steps=50,
    progress=gr.Progress(track_tqdm=True),
):

    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
        
    width, height = get_image_size(aspect_ratio)
    
    print("Generating for prompt:", prompt)
    
    image = pipe(
        prompt=prompt,
        negative_prompt=negative_prompt,
        width=width,
        height=height,
        num_inference_steps=num_inference_steps,
        true_cfg_scale=guidance_scale,
        generator=torch.Generator(device="cuda").manual_seed(seed)
    ).images[0]

    #image.save("example.png")

    return image, seed


css = """
#col-container {
    margin: 0 auto;
    max-width: 1024px;
}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        # gr.Markdown('<div style="text-align: center;"><a href="https://huggingface.co/Qwen/Qwen-Image"><img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-Image/qwen_image_logo.png" width="400"/></a></div>')
        gr.Markdown('<img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-Image/qwen_image_logo.png" alt="your_alt_text" width="400" style="display: block; margin: 0 auto;">')
        gr.Markdown("[Learn more](https://github.com/QwenLM/Qwen-Image) about the Qwen-Image series. Try on [Qwen Chat](https://chat.qwen.ai/), or [download model](https://huggingface.co/Qwen/Qwen-Image) to run locally with ComfyUI or diffusers.")
        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                placeholder="Enter your prompt",
                container=False,
                
            )
            run_button = gr.Button("Run", scale=0, variant="primary")

        result = gr.Image(label="Result", show_label=False)

        with gr.Accordion("Advanced Settings", open=False):

            with gr.Row():
                negative_prompt = gr.Text(
                    label="Negative prompt",
                    max_lines=1,
                    placeholder="Enter a negative prompt",
                    visible=True,
                )

            with gr.Row():
            
                seed = gr.Slider(
                    label="Seed",
                    minimum=0,
                    maximum=MAX_SEED,
                    step=1,
                    value=0,
                )

                randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

            with gr.Row():
                aspect_ratio = gr.Radio(
                    label="Image size (ratio)",
                    choices=["1:1", "16:9", "9:16", "4:3", "3:4"],
                    value="16:9",
                )

            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=7.5,
                    step=0.1,
                    value=4.0,
                )

                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=35, 
                )

        gr.Examples(examples=examples, inputs=[prompt], outputs=[result, seed], fn=infer, cache_examples=False, cache_mode="lazy")
    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[
            prompt,
            negative_prompt,
            seed,
            randomize_seed,
            aspect_ratio,
            guidance_scale,
            num_inference_steps,
        ],
        outputs=[result, seed],
    )

if __name__ == "__main__":
    demo.launch()