Spaces:
Runtime error
Runtime error
Commit
·
ceccbee
1
Parent(s):
cd181fe
Fix
Browse files- app.py +1 -39
- src/Inference.py +43 -0
- src/SemanticSearch.py +10 -2
app.py
CHANGED
@@ -1,13 +1,11 @@
|
|
1 |
import os
|
2 |
import json
|
3 |
|
4 |
-
import spaces
|
5 |
import gradio
|
6 |
|
7 |
import numpy
|
8 |
import pandas
|
9 |
|
10 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
11 |
|
12 |
import pyparseit
|
13 |
|
@@ -35,50 +33,14 @@ model_options = [
|
|
35 |
|
36 |
|
37 |
from src.SemanticSearch import SemanticSearch
|
|
|
38 |
|
39 |
extractor = SemanticSearch()
|
40 |
extractor.load_ne_from_kg(SPARQL_ENDPOINT)
|
41 |
extractor.build_vector_db()
|
42 |
extractor.load_vector_db()
|
43 |
|
44 |
-
@spaces.GPU
|
45 |
-
def model_completion(messages, model_name, model_temperature, model_thinking):
|
46 |
|
47 |
-
# load the tokenizer and the model
|
48 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
49 |
-
model = AutoModelForCausalLM.from_pretrained(
|
50 |
-
model_name,
|
51 |
-
torch_dtype="auto",
|
52 |
-
device_map="auto"
|
53 |
-
)
|
54 |
-
|
55 |
-
text = tokenizer.apply_chat_template(
|
56 |
-
messages,
|
57 |
-
tokenize=False,
|
58 |
-
add_generation_prompt=True,
|
59 |
-
enable_thinking=model_thinking
|
60 |
-
)
|
61 |
-
|
62 |
-
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
63 |
-
|
64 |
-
sample = True
|
65 |
-
|
66 |
-
if model_temperature == 0:
|
67 |
-
sample = False
|
68 |
-
|
69 |
-
|
70 |
-
# conduct text completion
|
71 |
-
generated_ids = model.generate(
|
72 |
-
**model_inputs,
|
73 |
-
max_new_tokens=4096,
|
74 |
-
do_sample=sample,
|
75 |
-
temperature=model_temperature
|
76 |
-
)
|
77 |
-
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
|
78 |
-
|
79 |
-
content = tokenizer.decode(output_ids, skip_special_tokens=True).strip("\n")
|
80 |
-
|
81 |
-
return content
|
82 |
|
83 |
|
84 |
def sparql_json_to_df(sparql_json):
|
|
|
1 |
import os
|
2 |
import json
|
3 |
|
|
|
4 |
import gradio
|
5 |
|
6 |
import numpy
|
7 |
import pandas
|
8 |
|
|
|
9 |
|
10 |
import pyparseit
|
11 |
|
|
|
33 |
|
34 |
|
35 |
from src.SemanticSearch import SemanticSearch
|
36 |
+
from src.Inference import model_completion
|
37 |
|
38 |
extractor = SemanticSearch()
|
39 |
extractor.load_ne_from_kg(SPARQL_ENDPOINT)
|
40 |
extractor.build_vector_db()
|
41 |
extractor.load_vector_db()
|
42 |
|
|
|
|
|
43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
|
46 |
def sparql_json_to_df(sparql_json):
|
src/Inference.py
CHANGED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import spaces
|
2 |
+
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
+
|
5 |
+
|
6 |
+
@spaces.GPU
|
7 |
+
def model_completion(messages, model_name, model_temperature, model_thinking):
|
8 |
+
|
9 |
+
# load the tokenizer and the model
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
11 |
+
model = AutoModelForCausalLM.from_pretrained(
|
12 |
+
model_name,
|
13 |
+
torch_dtype="auto",
|
14 |
+
device_map="auto"
|
15 |
+
)
|
16 |
+
|
17 |
+
text = tokenizer.apply_chat_template(
|
18 |
+
messages,
|
19 |
+
tokenize=False,
|
20 |
+
add_generation_prompt=True,
|
21 |
+
enable_thinking=model_thinking
|
22 |
+
)
|
23 |
+
|
24 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
25 |
+
|
26 |
+
sample = True
|
27 |
+
|
28 |
+
if model_temperature == 0:
|
29 |
+
sample = False
|
30 |
+
|
31 |
+
|
32 |
+
# conduct text completion
|
33 |
+
generated_ids = model.generate(
|
34 |
+
**model_inputs,
|
35 |
+
max_new_tokens=4096,
|
36 |
+
do_sample=sample,
|
37 |
+
temperature=model_temperature
|
38 |
+
)
|
39 |
+
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
|
40 |
+
|
41 |
+
content = tokenizer.decode(output_ids, skip_special_tokens=True).strip("\n")
|
42 |
+
|
43 |
+
return content
|
src/SemanticSearch.py
CHANGED
@@ -30,9 +30,17 @@ WHERE {
|
|
30 |
#FILTER(lang(?ne_label) = "en" || lang(?ne_label) = "")
|
31 |
#FILTER(lang(?class_label) = "en" || lang(?class_label) = "")
|
32 |
}
|
33 |
-
LIMIT 128
|
34 |
"""
|
35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
class SemanticSearch:
|
37 |
|
38 |
def __init__(self, embeddings_model="BAAI/bge-base-en-v1.5", reranking_model="BAAI/bge-reranker-v2-m3"):
|
@@ -174,7 +182,7 @@ class SemanticSearch:
|
|
174 |
|
175 |
print("Got ", len(documents), "sentences")
|
176 |
|
177 |
-
for sentences_batch in tqdm.tqdm(list(
|
178 |
|
179 |
embeddings += self.get_text_embeddings_local(sentences_batch)
|
180 |
|
|
|
30 |
#FILTER(lang(?ne_label) = "en" || lang(?ne_label) = "")
|
31 |
#FILTER(lang(?class_label) = "en" || lang(?class_label) = "")
|
32 |
}
|
|
|
33 |
"""
|
34 |
|
35 |
+
# HF seems to use 3.10!
|
36 |
+
def batched(iterable, n):
|
37 |
+
if n < 1:
|
38 |
+
raise ValueError('n must be at least one')
|
39 |
+
it = iter(iterable)
|
40 |
+
|
41 |
+
while batch := tuple(itertools.islice(it, n)):
|
42 |
+
yield batch
|
43 |
+
|
44 |
class SemanticSearch:
|
45 |
|
46 |
def __init__(self, embeddings_model="BAAI/bge-base-en-v1.5", reranking_model="BAAI/bge-reranker-v2-m3"):
|
|
|
182 |
|
183 |
print("Got ", len(documents), "sentences")
|
184 |
|
185 |
+
for sentences_batch in tqdm.tqdm(list(batched(documents, 512)), desc="Generating embeddings"):
|
186 |
|
187 |
embeddings += self.get_text_embeddings_local(sentences_batch)
|
188 |
|