File size: 4,356 Bytes
66f218e 05b8d7d 66f218e 1a7158c 91602d8 1a7158c 91602d8 66f218e 1a7158c 66f218e eccd0ae 66f218e ac26439 6ea61cc 66f218e 91602d8 66f218e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
import gradio as gr
from matplotlib import gridspec
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image
import tensorflow as tf
from transformers import SegformerFeatureExtractor, TFSegformerForSemanticSegmentation
feature_extractor = SegformerFeatureExtractor.from_pretrained(
"nickmuchi/segformer-b4-finetuned-segments-sidewalk"
)
model = TFSegformerForSemanticSegmentation.from_pretrained(
"nickmuchi/segformer-b4-finetuned-segments-sidewalk",
from_pt=True
)
def ade_palette():
"""ADE20K palette that maps each class to RGB values."""
return [
[56, 123, 45],
[45, 189, 106],
[210, 32, 89],
[0, 0, 0],
[56, 45, 189],
[234, 123, 67],
[155, 102, 200],
[33, 147, 176],
[255, 255, 255],
[67, 123, 89],
[190, 60, 45],
[134, 112, 200],
[78, 56, 123],
[200, 56, 123],
[87, 92, 204],
[120, 56, 123],
[45, 78, 123],
[112, 185, 212],
[156, 200, 56],
[32, 90, 210],
[56, 123, 67],
[180, 56, 123],
[123, 67, 45],
[45, 134, 200],
[67, 56, 123],
[78, 123, 67],
[32, 210, 90],
[45, 56, 189],
[123, 56, 123],
[56, 156, 200],
[189, 56, 45],
[112, 200, 56],
[204, 87, 92],
[200, 32, 90],
[123, 45, 78],
]
labels_list = []
with open(r'labels.txt', 'r') as fp:
for line in fp:
labels_list.append(line[:-1])
colormap = np.asarray(ade_palette())
def label_to_color_image(label):
if label.ndim != 2:
raise ValueError("Expect 2-D input label")
if np.max(label) >= len(colormap):
raise ValueError("label value too large.")
return colormap[label]
def draw_plot(pred_img, seg):
fig = plt.figure(figsize=(20, 15))
grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1])
plt.subplot(grid_spec[0])
plt.imshow(pred_img)
plt.axis('off')
LABEL_NAMES = np.asarray(labels_list)
FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1)
FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP)
unique_labels = np.unique(seg.numpy().astype("uint8"))
ax = plt.subplot(grid_spec[1])
plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation="nearest")
ax.yaxis.tick_right()
plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels])
plt.xticks([], [])
ax.tick_params(width=0.0, labelsize=25)
return fig
def on_mouseover(mouse_info):
x, y = mouse_info["position"]
# ์ฌ์ฉ์ ์ ์ ํจ์๋ฅผ ํธ์ถํ์ฌ ํน์ ์์ญ์ ๊ฐ์กฐ
highlight_segmentation(x, y)
def highlight_segmentation(x, y):
# ๋ง์ฐ์ค ์์น์ ๋ํ ์ธ๊ทธ๋ฉํ
์ด์
์ ๋ณด ๊ฐ์ ธ์ค๊ธฐ
seg_value = seg.numpy()[y, x]
# ์ธ๊ทธ๋ฉํ
์ด์
์ ๋ณด ์ถ๋ ฅ
print(f"Mouse over position: ({x}, {y}), Segmentation value: {seg_value}")
def sepia(input_img):
input_img = Image.fromarray(input_img)
inputs = feature_extractor(images=input_img, return_tensors="tf")
outputs = model(**inputs)
logits = outputs.logits
logits = tf.transpose(logits, [0, 2, 3, 1])
logits = tf.image.resize(
logits, input_img.size[::-1]
) # We reverse the shape of `image` because `image.size` returns width and height.
global seg
seg = tf.math.argmax(logits, axis=-1)[0]
color_seg = np.zeros(
(seg.shape[0], seg.shape[1], 3), dtype=np.uint8
) # height, width, 3
for label, color in enumerate(colormap):
color_seg[seg.numpy() == label, :] = color
# Show image + mask
pred_img = np.array(input_img) * 0.5 + color_seg * 0.5
pred_img = pred_img.astype(np.uint8)
fig = draw_plot(pred_img, seg)
return fig
demo = gr.Interface(fn=sepia,
inputs=gr.Image(shape=(400, 600)),
outputs=['plot'],
title="Gradio ๊ธฐ๋ฐ์ Hugging Face ์์ ๋ถํ ๋ชจ๋ธ ๋ฐ๋ชจ ๊ตฌํ ๊ณผ์ 3",
description="์ฐจ๋, ์ธ๋, ์์ ๊ฑฐ๋๋ก ๋ฑ์ ์ฌ์ง๋ง ๋ฃ์ด์ฃผ์ธ์",
examples=["example1.jpg", "example2.jpg", "example3.jpeg", "example4.jpg"],
allow_flagging='never',
events=[gr.Mouse(on_mouseover)])
demo.launch()
|