import gradio as gr import os from huggingface_hub import InferenceClient # Load Hugging Face token from secrets (set as HF_TOKEN) hf_token = os.getenv("HF_TOKEN") # Arabic Chat model client client = InferenceClient("sambanovasystems/SambaLingo-Arabic-Chat", token=hf_token) # Define the response function def respond(message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p): prompt = system_message.strip() + "\n" for user_msg, bot_msg in history: if user_msg: prompt += f"أنت: {user_msg}\n" if bot_msg: prompt += f"المساعد: {bot_msg}\n" prompt += f"أنت: {message}\nالمساعد:" # Generate response response = client.text_generation( prompt=prompt, max_new_tokens=max_tokens, temperature=temperature, top_p=top_p, ) return response.strip() # Gradio chat UI demo = gr.ChatInterface( fn=respond, additional_inputs=[ gr.Textbox(value="أنت مساعد ذكي ودود يتحدث اللغة العربية.", label="رسالة النظام"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="عدد الرموز القصوى"), gr.Slider(minimum=0.1, maximum=4.0, value=0.8, step=0.1, label="درجة العشوائية (Temperature)"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (النواة)"), ], title="روبوت دردشة باللغة العربية" ) if __name__ == "__main__": demo.launch()