Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import DistilBertForQuestionAnswering, DistilBertConfig, DistilBertTokenizerFast
|
2 |
+
import torch
|
3 |
+
|
4 |
+
model = DistilBertForQuestionAnswering(DistilBertConfig.from_pretrained('distilbert/distilbert-base-multilingual-cased')).to("cpu")
|
5 |
+
st_dict = torch.load("save/best_f1/checkpoint/QazDistilBERT.pt")
|
6 |
+
model.load_state_dict(st_dict)
|
7 |
+
tokenizer = DistilBertTokenizerFast.from_pretrained("dappyx/QazDistilbertFast-tokenizerV3")
|
8 |
+
|
9 |
+
import gradio as gr
|
10 |
+
|
11 |
+
def qa_pipeline(text,question):
|
12 |
+
inputs = tokenizer(question, text, return_tensors="pt")
|
13 |
+
input_ids = inputs['input_ids'].to("cpu")
|
14 |
+
attention_mask = inputs['attention_mask'].to("cpu")
|
15 |
+
outputs = model(input_ids=input_ids,attention_mask=attention_mask)
|
16 |
+
|
17 |
+
start_index = torch.argmax(outputs.start_logits, dim=-1).item()
|
18 |
+
end_index = torch.argmax(outputs.end_logits, dim=-1).item()
|
19 |
+
|
20 |
+
predict_answer_tokens = inputs.input_ids[0, start_index : end_index + 1]
|
21 |
+
return tokenizer.decode(predict_answer_tokens)
|
22 |
+
|
23 |
+
def answer_question(context, question):
|
24 |
+
result = qa_pipeline(context, question)
|
25 |
+
return result
|
26 |
+
|
27 |
+
|
28 |
+
# Создаем интерфейс
|
29 |
+
iface = gr.Interface(
|
30 |
+
fn=answer_question,
|
31 |
+
inputs=[
|
32 |
+
gr.Textbox(lines=10, label="Context"),
|
33 |
+
gr.Textbox(lines=2, label="Question")
|
34 |
+
],
|
35 |
+
outputs="text",
|
36 |
+
title="Question Answering Model",
|
37 |
+
description="Введите контекст и задайте вопрос, чтобы получить ответ."
|
38 |
+
)
|
39 |
+
|
40 |
+
# Запускаем интерфейс
|
41 |
+
iface.launch()
|