Spaces:
Sleeping
Sleeping
darthPanda
commited on
Commit
·
b7bb8ad
1
Parent(s):
d9b26bd
hooha
Browse files- LICENSE +21 -0
- README.md +1 -1
- __pycache__/embed_pdf.cpython-310.pyc +0 -0
- __pycache__/llm_helper.cpython-310.pyc +0 -0
- agent_helper.py +67 -0
- app-agent.py +59 -0
- app-agent2.py +59 -0
- app.py +168 -0
- embed_pdf.py +95 -0
- index/.gitignore +2 -0
- llm_helper.py +289 -0
- pdf/.gitignore +1 -0
- poetry.lock +0 -0
- pyproject.toml +29 -0
- requirements.txt +7 -0
LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2023 Nima Mahmoudi
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
README.md
CHANGED
@@ -9,4 +9,4 @@ app_file: app.py
|
|
9 |
pinned: false
|
10 |
---
|
11 |
|
12 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
9 |
pinned: false
|
10 |
---
|
11 |
|
12 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
__pycache__/embed_pdf.cpython-310.pyc
ADDED
Binary file (2.8 kB). View file
|
|
__pycache__/llm_helper.cpython-310.pyc
ADDED
Binary file (10.2 kB). View file
|
|
agent_helper.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# from langchain.callbacks import StreamlitCallbackHandler
|
2 |
+
from langchain.callbacks.streamlit.streamlit_callback_handler import StreamlitCallbackHandler
|
3 |
+
from tenacity import retry, wait_exponential, stop_after_attempt
|
4 |
+
|
5 |
+
def bind_logger(toolClass):
|
6 |
+
class newToolClass(toolClass):
|
7 |
+
def __init__(self, tool_name: str, st_cb: StreamlitCallbackHandler, *args, **kwargs):
|
8 |
+
super().__init__(*args, **kwargs)
|
9 |
+
self.st_cb = st_cb
|
10 |
+
self.tool_name = tool_name
|
11 |
+
|
12 |
+
def run(self, *args, **kwargs):
|
13 |
+
print(f"Running {toolClass.__name__} {[*args]}, {kwargs}")
|
14 |
+
|
15 |
+
if self.st_cb._current_thought is None:
|
16 |
+
self.st_cb.on_llm_start({}, [])
|
17 |
+
|
18 |
+
args_str = ' '.join(args) + ' ' + ' '.join([f'{k}=`{v}`' for k, v in kwargs.items()])
|
19 |
+
self.st_cb.on_tool_start({'name': self.tool_name}, args_str)
|
20 |
+
|
21 |
+
try:
|
22 |
+
ret_val = retry(
|
23 |
+
wait=wait_exponential(min=2, max=20),
|
24 |
+
stop=stop_after_attempt(5),
|
25 |
+
)(super().run)(*args, **kwargs)
|
26 |
+
self.st_cb.on_tool_end(ret_val)
|
27 |
+
return ret_val
|
28 |
+
except Exception as e:
|
29 |
+
original_exception = e.last_attempt.result()
|
30 |
+
print(f"Exception {original_exception} in {toolClass.__name__} {[*args]}, {kwargs}")
|
31 |
+
raise original_exception
|
32 |
+
|
33 |
+
|
34 |
+
return newToolClass
|
35 |
+
|
36 |
+
from functools import wraps
|
37 |
+
|
38 |
+
def retry_and_streamlit_callback(st_cb: StreamlitCallbackHandler, tool_name: str):
|
39 |
+
if st_cb is None:
|
40 |
+
return lambda x: x
|
41 |
+
|
42 |
+
def decorator(tool_func):
|
43 |
+
@wraps(tool_func)
|
44 |
+
def decorated_func(*args, **kwargs):
|
45 |
+
print(f"Running {tool_name} {args}, {kwargs}")
|
46 |
+
|
47 |
+
if st_cb._current_thought is None:
|
48 |
+
st_cb.on_llm_start({}, [])
|
49 |
+
|
50 |
+
args_str = ' '.join(args) + ' ' + ' '.join([f'{k}=`{v}`' for k, v in kwargs.items()])
|
51 |
+
st_cb.on_tool_start({'name': tool_name}, args_str)
|
52 |
+
|
53 |
+
@retry(wait=wait_exponential(min=2, max=20), stop=stop_after_attempt(5))
|
54 |
+
def retry_wrapper():
|
55 |
+
return tool_func(*args, **kwargs)
|
56 |
+
|
57 |
+
try:
|
58 |
+
ret_val = retry_wrapper()
|
59 |
+
st_cb.on_tool_end(ret_val)
|
60 |
+
return ret_val
|
61 |
+
except Exception as e:
|
62 |
+
print(f"Exception {e} in {tool_name} {args}, {kwargs}")
|
63 |
+
raise e
|
64 |
+
|
65 |
+
return decorated_func
|
66 |
+
|
67 |
+
return decorator
|
app-agent.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
|
3 |
+
from langchain.agents import initialize_agent, AgentType
|
4 |
+
from langchain.callbacks import StreamlitCallbackHandler
|
5 |
+
from langchain.chat_models import ChatOpenAI
|
6 |
+
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder
|
7 |
+
|
8 |
+
from llm_helper import get_agent_chain, get_lc_oai_tools
|
9 |
+
|
10 |
+
with st.sidebar:
|
11 |
+
openai_api_key = st.secrets["OPENAI_API_KEY"]
|
12 |
+
"[Get an OpenAI API key](https://platform.openai.com/account/api-keys)"
|
13 |
+
"[View the source code](https://github.com/streamlit/llm-examples/blob/main/pages/2_Chat_with_search.py)"
|
14 |
+
"[![Open in GitHub Codespaces](https://github.com/codespaces/badge.svg)](https://codespaces.new/streamlit/llm-examples?quickstart=1)"
|
15 |
+
|
16 |
+
st.title("🔎 LangChain - Chat with search")
|
17 |
+
|
18 |
+
"""
|
19 |
+
In this example, we're using `StreamlitCallbackHandler` to display the thoughts and actions of an agent in an interactive Streamlit app.
|
20 |
+
Try more LangChain 🤝 Streamlit Agent examples at [github.com/langchain-ai/streamlit-agent](https://github.com/langchain-ai/streamlit-agent).
|
21 |
+
"""
|
22 |
+
|
23 |
+
if "messages" not in st.session_state:
|
24 |
+
st.session_state["messages"] = [
|
25 |
+
{"role": "assistant", "content": "Hi, I'm a chatbot who can search the web. How can I help you?"}
|
26 |
+
]
|
27 |
+
|
28 |
+
for msg in st.session_state.messages:
|
29 |
+
st.chat_message(msg["role"]).write(msg["content"])
|
30 |
+
|
31 |
+
if prompt := st.chat_input(placeholder="Who won the Women's U.S. Open in 2018?"):
|
32 |
+
st.session_state.messages.append({"role": "user", "content": prompt})
|
33 |
+
st.chat_message("user").write(prompt)
|
34 |
+
|
35 |
+
if not openai_api_key:
|
36 |
+
st.info("Please add your OpenAI API key to continue.")
|
37 |
+
st.stop()
|
38 |
+
|
39 |
+
llm = ChatOpenAI(model_name="gpt-3.5-turbo-1106", openai_api_key=openai_api_key, streaming=True)
|
40 |
+
lc_tools, _ = get_lc_oai_tools()
|
41 |
+
search_agent = initialize_agent(lc_tools, llm, agent=AgentType.OPENAI_FUNCTIONS, handle_parsing_errors=True, verbose=True)
|
42 |
+
|
43 |
+
agent_prompt = ChatPromptTemplate.from_messages(
|
44 |
+
[
|
45 |
+
("system", "You are a helpful assistant, use the search tool to answer the user's question and cite only the page number when you use information coming (like [p1]) from the source document. Always use the content from the source document to answer the user's question. If you need to compare multiple subjects, search them one by one."),
|
46 |
+
("user", "{input}"),
|
47 |
+
MessagesPlaceholder(variable_name="agent_scratchpad"),
|
48 |
+
]
|
49 |
+
)
|
50 |
+
search_agent.agent.prompt = agent_prompt
|
51 |
+
with st.chat_message("assistant"):
|
52 |
+
st_cb = StreamlitCallbackHandler(st.container(), expand_new_thoughts=False)
|
53 |
+
response = search_agent.run(prompt, callbacks=[st_cb])
|
54 |
+
# search_agent = get_agent_chain(callbacks=[st_cb])
|
55 |
+
# response = search_agent.invoke({"input": prompt})
|
56 |
+
# response = response["output"]
|
57 |
+
|
58 |
+
st.session_state.messages.append({"role": "assistant", "content": response})
|
59 |
+
st.write(response)
|
app-agent2.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
|
3 |
+
from langchain.agents import initialize_agent, AgentType
|
4 |
+
from langchain.callbacks import StreamlitCallbackHandler
|
5 |
+
from langchain.chat_models import ChatOpenAI
|
6 |
+
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder
|
7 |
+
|
8 |
+
from langchain.agents.format_scratchpad import format_to_openai_function_messages
|
9 |
+
from langchain.agents.output_parsers import OpenAIFunctionsAgentOutputParser
|
10 |
+
|
11 |
+
from llm_helper import get_agent_chain, get_lc_oai_tools, convert_message
|
12 |
+
from langchain.agents import AgentExecutor
|
13 |
+
|
14 |
+
with st.sidebar:
|
15 |
+
openai_api_key = st.secrets["OPENAI_API_KEY"]
|
16 |
+
"[Get an OpenAI API key](https://platform.openai.com/account/api-keys)"
|
17 |
+
"[View the source code](https://github.com/streamlit/llm-examples/blob/main/pages/2_Chat_with_search.py)"
|
18 |
+
"[![Open in GitHub Codespaces](https://github.com/codespaces/badge.svg)](https://codespaces.new/streamlit/llm-examples?quickstart=1)"
|
19 |
+
|
20 |
+
st.title("🔎 LangChain - Chat with search")
|
21 |
+
|
22 |
+
"""
|
23 |
+
In this example, we're using `StreamlitCallbackHandler` to display the thoughts and actions of an agent in an interactive Streamlit app.
|
24 |
+
Try more LangChain 🤝 Streamlit Agent examples at [github.com/langchain-ai/streamlit-agent](https://github.com/langchain-ai/streamlit-agent).
|
25 |
+
"""
|
26 |
+
|
27 |
+
if "messages" not in st.session_state:
|
28 |
+
st.session_state["messages"] = [
|
29 |
+
{"role": "assistant", "content": "Hi, I'm a chatbot who can search the web. How can I help you?"}
|
30 |
+
]
|
31 |
+
|
32 |
+
for msg in st.session_state.messages:
|
33 |
+
st.chat_message(msg["role"]).write(msg["content"])
|
34 |
+
|
35 |
+
if prompt := st.chat_input(placeholder="Who won the Women's U.S. Open in 2018?"):
|
36 |
+
st.session_state.messages.append({"role": "user", "content": prompt})
|
37 |
+
st.chat_message("user").write(prompt)
|
38 |
+
|
39 |
+
if not openai_api_key:
|
40 |
+
st.info("Please add your OpenAI API key to continue.")
|
41 |
+
st.stop()
|
42 |
+
|
43 |
+
if "messages" in st.session_state:
|
44 |
+
chat_history = [convert_message(m) for m in st.session_state.messages[:-1]]
|
45 |
+
else:
|
46 |
+
chat_history = []
|
47 |
+
|
48 |
+
with st.chat_message("assistant"):
|
49 |
+
st_cb = StreamlitCallbackHandler(st.container(), expand_new_thoughts=False)
|
50 |
+
agent = get_agent_chain(st_cb=st_cb)
|
51 |
+
|
52 |
+
response = agent.invoke({
|
53 |
+
"input": prompt,
|
54 |
+
"chat_history": chat_history,
|
55 |
+
})
|
56 |
+
response = response["output"]
|
57 |
+
|
58 |
+
st.session_state.messages.append({"role": "assistant", "content": response})
|
59 |
+
st.write(response)
|
app.py
ADDED
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import os
|
3 |
+
import embed_pdf
|
4 |
+
import shutil
|
5 |
+
|
6 |
+
def clear_directory(directory):
|
7 |
+
for filename in os.listdir(directory):
|
8 |
+
file_path = os.path.join(directory, filename)
|
9 |
+
try:
|
10 |
+
if os.path.isfile(file_path) or os.path.islink(file_path):
|
11 |
+
os.unlink(file_path)
|
12 |
+
elif os.path.isdir(file_path):
|
13 |
+
shutil.rmtree(file_path)
|
14 |
+
except Exception as e:
|
15 |
+
print(f'Failed to delete {file_path}. Reason: {e}')
|
16 |
+
|
17 |
+
def clear_pdf_files(directory):
|
18 |
+
for filename in os.listdir(directory):
|
19 |
+
file_path = os.path.join(directory, filename)
|
20 |
+
try:
|
21 |
+
if os.path.isfile(file_path) and file_path.endswith('.pdf'):
|
22 |
+
os.remove(file_path)
|
23 |
+
except Exception as e:
|
24 |
+
print(f'Failed to delete {file_path}. Reason: {e}')
|
25 |
+
|
26 |
+
# clear_pdf_files("pdf")
|
27 |
+
# clear_directory("index")
|
28 |
+
|
29 |
+
|
30 |
+
# create sidebar and ask for openai api key if not set in secrets
|
31 |
+
secrets_file_path = os.path.join(".streamlit", "secrets.toml")
|
32 |
+
# if os.path.exists(secrets_file_path):
|
33 |
+
# try:
|
34 |
+
# if "OPENAI_API_KEY" in st.secrets:
|
35 |
+
# os.environ["OPENAI_API_KEY"] = st.secrets["OPENAI_API_KEY"]
|
36 |
+
# else:
|
37 |
+
# print("OpenAI API Key not found in environment variables")
|
38 |
+
# except FileNotFoundError:
|
39 |
+
# print('Secrets file not found')
|
40 |
+
# else:
|
41 |
+
# print('Secrets file not found')
|
42 |
+
|
43 |
+
# if not os.getenv('OPENAI_API_KEY', '').startswith("sk-"):
|
44 |
+
# os.environ["OPENAI_API_KEY"] = st.sidebar.text_input(
|
45 |
+
# "OpenAI API Key", type="password"
|
46 |
+
# )
|
47 |
+
# else:
|
48 |
+
# if st.sidebar.button("Embed Documents"):
|
49 |
+
# st.sidebar.info("Embedding documents...")
|
50 |
+
# try:
|
51 |
+
# embed_pdf.embed_all_pdf_docs()
|
52 |
+
# st.sidebar.info("Done!")
|
53 |
+
# except Exception as e:
|
54 |
+
# st.sidebar.error(e)
|
55 |
+
# st.sidebar.error("Failed to embed documents.")
|
56 |
+
|
57 |
+
os.environ["OPENAI_API_KEY"] = st.sidebar.text_input(
|
58 |
+
"OpenAI API Key", type="password"
|
59 |
+
)
|
60 |
+
|
61 |
+
uploaded_file = st.sidebar.file_uploader("Upload Document", type=['pdf', 'docx'], disabled=False)
|
62 |
+
|
63 |
+
if uploaded_file is None:
|
64 |
+
file_uploaded_bool = False
|
65 |
+
else:
|
66 |
+
file_uploaded_bool = True
|
67 |
+
|
68 |
+
if st.sidebar.button("Embed Documents", disabled=not file_uploaded_bool):
|
69 |
+
st.sidebar.info("Embedding documents...")
|
70 |
+
try:
|
71 |
+
embed_pdf.embed_all_inputed_pdf_docs(uploaded_file)
|
72 |
+
# embed_pdf.embed_all_pdf_docs()
|
73 |
+
st.sidebar.info("Done!")
|
74 |
+
except Exception as e:
|
75 |
+
st.sidebar.error(e)
|
76 |
+
st.sidebar.error("Failed to embed documents.")
|
77 |
+
|
78 |
+
# create the app
|
79 |
+
st.title("Chat with your PDF")
|
80 |
+
|
81 |
+
# chosen_file = st.radio(
|
82 |
+
# "Choose a file to search", embed_pdf.get_all_index_files(), index=0
|
83 |
+
# )
|
84 |
+
|
85 |
+
# check if openai api key is set
|
86 |
+
if not os.getenv('OPENAI_API_KEY', '').startswith("sk-"):
|
87 |
+
st.warning("Please enter your OpenAI API key!", icon="⚠")
|
88 |
+
st.stop()
|
89 |
+
|
90 |
+
# load the agent
|
91 |
+
from llm_helper import convert_message, get_rag_chain, get_rag_fusion_chain
|
92 |
+
|
93 |
+
rag_method_map = {
|
94 |
+
'Basic RAG': get_rag_chain,
|
95 |
+
'RAG Fusion': get_rag_fusion_chain
|
96 |
+
}
|
97 |
+
chosen_rag_method = st.radio(
|
98 |
+
"Choose a RAG method", rag_method_map.keys(), index=0
|
99 |
+
)
|
100 |
+
get_rag_chain_func = rag_method_map[chosen_rag_method]
|
101 |
+
## get the chain WITHOUT the retrieval callback (not used)
|
102 |
+
# custom_chain = get_rag_chain_func(chosen_file)
|
103 |
+
|
104 |
+
# create the message history state
|
105 |
+
if "messages" not in st.session_state:
|
106 |
+
st.session_state.messages = []
|
107 |
+
|
108 |
+
# render older messages
|
109 |
+
for message in st.session_state.messages:
|
110 |
+
with st.chat_message(message["role"]):
|
111 |
+
st.markdown(message["content"])
|
112 |
+
|
113 |
+
# render the chat input
|
114 |
+
prompt = st.chat_input("Enter your message...")
|
115 |
+
if prompt:
|
116 |
+
st.session_state.messages.append({"role": "user", "content": prompt})
|
117 |
+
|
118 |
+
# render the user's new message
|
119 |
+
with st.chat_message("user"):
|
120 |
+
st.markdown(prompt)
|
121 |
+
|
122 |
+
# render the assistant's response
|
123 |
+
with st.chat_message("assistant"):
|
124 |
+
retrival_container = st.container()
|
125 |
+
message_placeholder = st.empty()
|
126 |
+
|
127 |
+
# retrieval_status = retrival_container.status("**Context Retrieval**")
|
128 |
+
queried_questions = []
|
129 |
+
rendered_questions = set()
|
130 |
+
def update_retrieval_status():
|
131 |
+
for q in queried_questions:
|
132 |
+
if q in rendered_questions:
|
133 |
+
continue
|
134 |
+
rendered_questions.add(q)
|
135 |
+
# retrieval_status.markdown(f"\n\n`- {q}`")
|
136 |
+
retrival_container.markdown(f"\n\n`- {q}`")
|
137 |
+
def retrieval_cb(qs):
|
138 |
+
for q in qs:
|
139 |
+
if q not in queried_questions:
|
140 |
+
queried_questions.append(q)
|
141 |
+
return qs
|
142 |
+
|
143 |
+
# get the chain with the retrieval callback
|
144 |
+
custom_chain = get_rag_chain_func(uploaded_file.name, retrieval_cb=retrieval_cb)
|
145 |
+
|
146 |
+
if "messages" in st.session_state:
|
147 |
+
chat_history = [convert_message(m) for m in st.session_state.messages[:-1]]
|
148 |
+
else:
|
149 |
+
chat_history = []
|
150 |
+
|
151 |
+
full_response = ""
|
152 |
+
for response in custom_chain.stream(
|
153 |
+
{"input": prompt, "chat_history": chat_history}
|
154 |
+
):
|
155 |
+
if "output" in response:
|
156 |
+
full_response += response["output"]
|
157 |
+
else:
|
158 |
+
full_response += response.content
|
159 |
+
|
160 |
+
message_placeholder.markdown(full_response + "▌")
|
161 |
+
update_retrieval_status()
|
162 |
+
|
163 |
+
# retrival_container.update(state="complete")
|
164 |
+
# retrieval_status.update(state="complete")
|
165 |
+
message_placeholder.markdown(full_response)
|
166 |
+
|
167 |
+
# add the full response to the message history
|
168 |
+
st.session_state.messages.append({"role": "assistant", "content": full_response})
|
embed_pdf.py
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain.document_loaders import PagedPDFSplitter
|
2 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
3 |
+
from langchain.embeddings.openai import OpenAIEmbeddings
|
4 |
+
from langchain.vectorstores import FAISS
|
5 |
+
|
6 |
+
import os
|
7 |
+
|
8 |
+
|
9 |
+
def embed_document(file_name, file_folder="pdf", embedding_folder="index"):
|
10 |
+
file_path = f"{file_folder}/{file_name}"
|
11 |
+
loader = PagedPDFSplitter(file_path)
|
12 |
+
source_pages = loader.load_and_split()
|
13 |
+
|
14 |
+
embedding_func = OpenAIEmbeddings()
|
15 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
16 |
+
chunk_size=500,
|
17 |
+
chunk_overlap=100,
|
18 |
+
length_function=len,
|
19 |
+
is_separator_regex=False,
|
20 |
+
separators=["\n\n", "\n", " ", ""],
|
21 |
+
)
|
22 |
+
source_chunks = text_splitter.split_documents(source_pages)
|
23 |
+
search_index = FAISS.from_documents(source_chunks, embedding_func)
|
24 |
+
search_index.save_local(
|
25 |
+
folder_path=embedding_folder, index_name=file_name + ".index"
|
26 |
+
)
|
27 |
+
|
28 |
+
def embed_all_inputed_pdf_docs(uploaded_document):
|
29 |
+
# Define the directory path
|
30 |
+
pdf_directory = "pdf"
|
31 |
+
pdf_file_path = os.path.join(pdf_directory, uploaded_document.name)
|
32 |
+
|
33 |
+
with open(pdf_file_path, 'wb') as file:
|
34 |
+
file.write(uploaded_document.getbuffer())
|
35 |
+
|
36 |
+
# Check if the directory exists
|
37 |
+
if os.path.exists(pdf_directory):
|
38 |
+
# List all PDF files in the directory
|
39 |
+
pdf_files = [
|
40 |
+
file for file in os.listdir(pdf_directory) if file.endswith(".pdf")
|
41 |
+
]
|
42 |
+
|
43 |
+
if pdf_files:
|
44 |
+
for pdf_file in pdf_files:
|
45 |
+
print(f"Embedding {pdf_file}...")
|
46 |
+
embed_document(file_name=pdf_file, file_folder=pdf_directory)
|
47 |
+
print("Done!")
|
48 |
+
else:
|
49 |
+
raise Exception("No PDF files found in the directory.")
|
50 |
+
else:
|
51 |
+
raise Exception(f"Directory '{pdf_directory}' does not exist.")
|
52 |
+
|
53 |
+
|
54 |
+
def embed_all_pdf_docs():
|
55 |
+
# Define the directory path
|
56 |
+
pdf_directory = "pdf"
|
57 |
+
|
58 |
+
# Check if the directory exists
|
59 |
+
if os.path.exists(pdf_directory):
|
60 |
+
# List all PDF files in the directory
|
61 |
+
pdf_files = [
|
62 |
+
file for file in os.listdir(pdf_directory) if file.endswith(".pdf")
|
63 |
+
]
|
64 |
+
|
65 |
+
if pdf_files:
|
66 |
+
for pdf_file in pdf_files:
|
67 |
+
print(f"Embedding {pdf_file}...")
|
68 |
+
embed_document(file_name=pdf_file, file_folder=pdf_directory)
|
69 |
+
print("Done!")
|
70 |
+
else:
|
71 |
+
raise Exception("No PDF files found in the directory.")
|
72 |
+
else:
|
73 |
+
raise Exception(f"Directory '{pdf_directory}' does not exist.")
|
74 |
+
|
75 |
+
|
76 |
+
def get_all_index_files():
|
77 |
+
# Define the directory path
|
78 |
+
index_directory = "index"
|
79 |
+
|
80 |
+
# Check if the directory exists
|
81 |
+
if os.path.exists(index_directory):
|
82 |
+
# List all index files in the directory
|
83 |
+
postfix = ".index.faiss"
|
84 |
+
index_files = [
|
85 |
+
file.replace(postfix, "")
|
86 |
+
for file in os.listdir(index_directory)
|
87 |
+
if file.endswith(postfix)
|
88 |
+
]
|
89 |
+
|
90 |
+
if index_files:
|
91 |
+
return index_files
|
92 |
+
else:
|
93 |
+
raise Exception("No index files found in the directory.")
|
94 |
+
else:
|
95 |
+
raise Exception(f"Directory '{index_directory}' does not exist.")
|
index/.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
*.faiss
|
2 |
+
*.pkl
|
llm_helper.py
ADDED
@@ -0,0 +1,289 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Optional
|
2 |
+
|
3 |
+
# langchain imports
|
4 |
+
from langchain.chat_models import ChatOpenAI
|
5 |
+
from langchain.schema.runnable import RunnableMap
|
6 |
+
from langchain.prompts.prompt import PromptTemplate
|
7 |
+
from langchain.prompts import ChatPromptTemplate
|
8 |
+
from langchain.schema.runnable import RunnablePassthrough
|
9 |
+
from langchain.schema.output_parser import StrOutputParser
|
10 |
+
from operator import itemgetter
|
11 |
+
from langchain.schema.messages import HumanMessage, SystemMessage, AIMessage
|
12 |
+
from langchain.callbacks.streamlit.streamlit_callback_handler import StreamlitCallbackHandler
|
13 |
+
|
14 |
+
|
15 |
+
def format_docs(docs):
|
16 |
+
res = ""
|
17 |
+
# res = str(docs)
|
18 |
+
for doc in docs:
|
19 |
+
escaped_page_content = doc.page_content.replace("\n", "\\n")
|
20 |
+
res += "<doc>\n"
|
21 |
+
res += f" <content>{escaped_page_content}</content>\n"
|
22 |
+
for m in doc.metadata:
|
23 |
+
res += f" <{m}>{doc.metadata[m]}</{m}>\n"
|
24 |
+
res += "</doc>\n"
|
25 |
+
return res
|
26 |
+
|
27 |
+
|
28 |
+
def get_search_index(file_name="Mahmoudi_Nima_202202_PhD.pdf", index_folder="index"):
|
29 |
+
# load embeddings
|
30 |
+
from langchain.vectorstores import FAISS
|
31 |
+
from langchain.embeddings.openai import OpenAIEmbeddings
|
32 |
+
|
33 |
+
search_index = FAISS.load_local(
|
34 |
+
folder_path=index_folder,
|
35 |
+
index_name=file_name + ".index",
|
36 |
+
embeddings=OpenAIEmbeddings(),
|
37 |
+
)
|
38 |
+
return search_index
|
39 |
+
|
40 |
+
|
41 |
+
def convert_message(m):
|
42 |
+
if m["role"] == "user":
|
43 |
+
return HumanMessage(content=m["content"])
|
44 |
+
elif m["role"] == "assistant":
|
45 |
+
return AIMessage(content=m["content"])
|
46 |
+
elif m["role"] == "system":
|
47 |
+
return SystemMessage(content=m["content"])
|
48 |
+
else:
|
49 |
+
raise ValueError(f"Unknown role {m['role']}")
|
50 |
+
|
51 |
+
|
52 |
+
_condense_template = """Given the following conversation and a follow up question, rephrase the follow up question to be a standalone question, in its original language.
|
53 |
+
|
54 |
+
Chat History:
|
55 |
+
{chat_history}
|
56 |
+
Follow Up Input: {input}
|
57 |
+
Standalone question:"""
|
58 |
+
CONDENSE_QUESTION_PROMPT = PromptTemplate.from_template(_condense_template)
|
59 |
+
|
60 |
+
_rag_template = """Answer the question based only on the following context, citing the page number(s) of the document(s) you used to answer the question:
|
61 |
+
{context}
|
62 |
+
|
63 |
+
Question: {question}
|
64 |
+
"""
|
65 |
+
ANSWER_PROMPT = ChatPromptTemplate.from_template(_rag_template)
|
66 |
+
|
67 |
+
|
68 |
+
def _format_chat_history(chat_history):
|
69 |
+
def format_single_chat_message(m):
|
70 |
+
if type(m) is HumanMessage:
|
71 |
+
return "Human: " + m.content
|
72 |
+
elif type(m) is AIMessage:
|
73 |
+
return "Assistant: " + m.content
|
74 |
+
elif type(m) is SystemMessage:
|
75 |
+
return "System: " + m.content
|
76 |
+
else:
|
77 |
+
raise ValueError(f"Unknown role {m['role']}")
|
78 |
+
|
79 |
+
return "\n".join([format_single_chat_message(m) for m in chat_history])
|
80 |
+
|
81 |
+
def get_standalone_question_from_chat_history_chain():
|
82 |
+
_inputs = RunnableMap(
|
83 |
+
standalone_question=RunnablePassthrough.assign(
|
84 |
+
chat_history=lambda x: _format_chat_history(x["chat_history"])
|
85 |
+
)
|
86 |
+
| CONDENSE_QUESTION_PROMPT
|
87 |
+
| ChatOpenAI(temperature=0)
|
88 |
+
| StrOutputParser(),
|
89 |
+
)
|
90 |
+
return _inputs
|
91 |
+
|
92 |
+
def get_rag_chain(file_name, index_folder="index", retrieval_cb=None):
|
93 |
+
vectorstore = get_search_index(file_name, index_folder)
|
94 |
+
retriever = vectorstore.as_retriever()
|
95 |
+
|
96 |
+
if retrieval_cb is None:
|
97 |
+
retrieval_cb = lambda x: x
|
98 |
+
|
99 |
+
def context_update_fn(q):
|
100 |
+
retrieval_cb([q])
|
101 |
+
return q
|
102 |
+
|
103 |
+
_inputs = RunnableMap(
|
104 |
+
standalone_question=RunnablePassthrough.assign(
|
105 |
+
chat_history=lambda x: _format_chat_history(x["chat_history"])
|
106 |
+
)
|
107 |
+
| CONDENSE_QUESTION_PROMPT
|
108 |
+
| ChatOpenAI(temperature=0)
|
109 |
+
| StrOutputParser(),
|
110 |
+
)
|
111 |
+
_context = {
|
112 |
+
"context": itemgetter("standalone_question") | RunnablePassthrough(context_update_fn) | retriever | format_docs,
|
113 |
+
"question": lambda x: x["standalone_question"],
|
114 |
+
}
|
115 |
+
conversational_qa_chain = _inputs | _context | ANSWER_PROMPT | ChatOpenAI()
|
116 |
+
return conversational_qa_chain
|
117 |
+
|
118 |
+
|
119 |
+
# RAG fusion chain
|
120 |
+
# source1: https://youtu.be/GchC5WxeXGc?si=6i7J0rPZI7SNwFYZ
|
121 |
+
# source2: https://towardsdatascience.com/forget-rag-the-future-is-rag-fusion-1147298d8ad1
|
122 |
+
def reciprocal_rank_fusion(results: list[list], k=60):
|
123 |
+
from langchain.load import dumps, loads
|
124 |
+
fused_scores = {}
|
125 |
+
for docs in results:
|
126 |
+
# Assumes the docs are returned in sorted order of relevance
|
127 |
+
for rank, doc in enumerate(docs):
|
128 |
+
doc_str = dumps(doc)
|
129 |
+
if doc_str not in fused_scores:
|
130 |
+
fused_scores[doc_str] = 0
|
131 |
+
fused_scores[doc_str] += 1 / (rank + k)
|
132 |
+
|
133 |
+
reranked_results = [
|
134 |
+
(loads(doc), score)
|
135 |
+
for doc, score in sorted(fused_scores.items(), key=lambda x: x[1], reverse=True)
|
136 |
+
]
|
137 |
+
return reranked_results
|
138 |
+
|
139 |
+
|
140 |
+
def get_search_query_generation_chain():
|
141 |
+
from langchain.prompts import SystemMessagePromptTemplate, HumanMessagePromptTemplate
|
142 |
+
prompt = ChatPromptTemplate(
|
143 |
+
input_variables=['original_query'],
|
144 |
+
messages=[
|
145 |
+
SystemMessagePromptTemplate(
|
146 |
+
prompt=PromptTemplate(
|
147 |
+
input_variables=[],
|
148 |
+
template='You are a helpful assistant that generates multiple search queries based on a single input query.'
|
149 |
+
)
|
150 |
+
),
|
151 |
+
HumanMessagePromptTemplate(
|
152 |
+
prompt=PromptTemplate(
|
153 |
+
input_variables=['original_query'],
|
154 |
+
template='Generate multiple search queries related to: {original_query} \n OUTPUT (4 queries):'
|
155 |
+
)
|
156 |
+
)
|
157 |
+
]
|
158 |
+
)
|
159 |
+
|
160 |
+
generate_queries = (
|
161 |
+
prompt |
|
162 |
+
ChatOpenAI(temperature=0) |
|
163 |
+
StrOutputParser() |
|
164 |
+
(lambda x: x.split("\n"))
|
165 |
+
)
|
166 |
+
|
167 |
+
return generate_queries
|
168 |
+
|
169 |
+
def get_rag_fusion_chain(file_name, index_folder="index", retrieval_cb=None):
|
170 |
+
vectorstore = get_search_index(file_name, index_folder)
|
171 |
+
retriever = vectorstore.as_retriever()
|
172 |
+
query_generation_chain = get_search_query_generation_chain()
|
173 |
+
_inputs = RunnableMap(
|
174 |
+
standalone_question=RunnablePassthrough.assign(
|
175 |
+
chat_history=lambda x: _format_chat_history(x["chat_history"])
|
176 |
+
)
|
177 |
+
| CONDENSE_QUESTION_PROMPT
|
178 |
+
| ChatOpenAI(temperature=0)
|
179 |
+
| StrOutputParser(),
|
180 |
+
)
|
181 |
+
|
182 |
+
if retrieval_cb is None:
|
183 |
+
retrieval_cb = lambda x: x
|
184 |
+
|
185 |
+
_context = {
|
186 |
+
"context":
|
187 |
+
RunnablePassthrough.assign(
|
188 |
+
original_query=lambda x: x["standalone_question"]
|
189 |
+
)
|
190 |
+
| query_generation_chain
|
191 |
+
| retrieval_cb
|
192 |
+
| retriever.map()
|
193 |
+
| reciprocal_rank_fusion
|
194 |
+
| (lambda x: [item[0] for item in x])
|
195 |
+
| format_docs,
|
196 |
+
"question": lambda x: x["standalone_question"],
|
197 |
+
}
|
198 |
+
conversational_qa_chain = _inputs | _context | ANSWER_PROMPT | ChatOpenAI()
|
199 |
+
return conversational_qa_chain
|
200 |
+
|
201 |
+
|
202 |
+
####################
|
203 |
+
# Adding agent chain with OpenAI function calling
|
204 |
+
|
205 |
+
def get_search_tool_from_index(search_index, st_cb: Optional[StreamlitCallbackHandler] = None, ):
|
206 |
+
from langchain.agents import tool
|
207 |
+
from agent_helper import retry_and_streamlit_callback
|
208 |
+
|
209 |
+
@tool
|
210 |
+
@retry_and_streamlit_callback(st_cb=st_cb, tool_name="Content Seach Tool")
|
211 |
+
def search(query: str) -> str:
|
212 |
+
"""Search the contents of the source document for the queries."""
|
213 |
+
|
214 |
+
docs = search_index.similarity_search(query, k=5)
|
215 |
+
return format_docs(docs)
|
216 |
+
|
217 |
+
return search
|
218 |
+
|
219 |
+
def get_lc_oai_tools(file_name:str = "Mahmoudi_Nima_202202_PhD.pdf", index_folder: str = "index", st_cb: Optional[StreamlitCallbackHandler] = None, ):
|
220 |
+
from langchain.tools.render import format_tool_to_openai_tool
|
221 |
+
search_index = get_search_index(file_name, index_folder)
|
222 |
+
lc_tools = [get_search_tool_from_index(search_index=search_index, st_cb=st_cb)]
|
223 |
+
oai_tools = [format_tool_to_openai_tool(t) for t in lc_tools]
|
224 |
+
return lc_tools, oai_tools
|
225 |
+
|
226 |
+
def get_agent_chain(file_name="Mahmoudi_Nima_202202_PhD.pdf", index_folder="index", callbacks=None, st_cb: Optional[StreamlitCallbackHandler] = None, ):
|
227 |
+
if callbacks is None:
|
228 |
+
callbacks = []
|
229 |
+
|
230 |
+
from langchain.agents import initialize_agent, AgentType
|
231 |
+
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder
|
232 |
+
from langchain.agents.format_scratchpad.openai_tools import (
|
233 |
+
format_to_openai_tool_messages,
|
234 |
+
)
|
235 |
+
from langchain.agents import AgentExecutor
|
236 |
+
from langchain.agents.output_parsers.openai_tools import OpenAIToolsAgentOutputParser
|
237 |
+
|
238 |
+
lc_tools, oai_tools = get_lc_oai_tools(file_name, index_folder, st_cb)
|
239 |
+
|
240 |
+
|
241 |
+
prompt = ChatPromptTemplate.from_messages(
|
242 |
+
[
|
243 |
+
("system", "You are a helpful assistant, use the search tool to answer the user's question and cite only the page number when you use information coming (like [p1]) from the source document.\nchat history: {chat_history}"),
|
244 |
+
("user", "{input}"),
|
245 |
+
MessagesPlaceholder(variable_name="agent_scratchpad"),
|
246 |
+
]
|
247 |
+
)
|
248 |
+
llm = ChatOpenAI(temperature=0, model="gpt-3.5-turbo-1106")
|
249 |
+
|
250 |
+
agent = (
|
251 |
+
{
|
252 |
+
"input": lambda x: x["input"],
|
253 |
+
"agent_scratchpad": lambda x: format_to_openai_tool_messages(
|
254 |
+
x["intermediate_steps"]
|
255 |
+
),
|
256 |
+
"chat_history": lambda x: _format_chat_history(x["chat_history"]),
|
257 |
+
}
|
258 |
+
| prompt
|
259 |
+
| llm.bind(tools=oai_tools)
|
260 |
+
| OpenAIToolsAgentOutputParser()
|
261 |
+
)
|
262 |
+
|
263 |
+
agent_executor = AgentExecutor(agent=agent, tools=lc_tools, verbose=True, callbacks=callbacks)
|
264 |
+
return agent_executor
|
265 |
+
|
266 |
+
|
267 |
+
if __name__ == "__main__":
|
268 |
+
question_generation_chain = get_search_query_generation_chain()
|
269 |
+
print('='*50)
|
270 |
+
print('RAG Chain')
|
271 |
+
chain = get_rag_chain()
|
272 |
+
print(chain.invoke({'input': 'serverless computing', 'chat_history': []}))
|
273 |
+
|
274 |
+
print('='*50)
|
275 |
+
print('Question Generation Chain')
|
276 |
+
print(question_generation_chain.invoke({'original_query': 'serverless computing'}))
|
277 |
+
|
278 |
+
print('-'*50)
|
279 |
+
print('RAG Fusion Chain')
|
280 |
+
chain = get_rag_fusion_chain()
|
281 |
+
print(chain.invoke({'input': 'serverless computing', 'chat_history': []}))
|
282 |
+
|
283 |
+
agent_executor = get_agent_chain()
|
284 |
+
print(
|
285 |
+
agent_executor.invoke({
|
286 |
+
"input": "based on the source document, compare FaaS with BaaS??",
|
287 |
+
"chat_history": [],
|
288 |
+
})
|
289 |
+
)
|
pdf/.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
*.pdf
|
poetry.lock
ADDED
The diff for this file is too large to render.
See raw diff
|
|
pyproject.toml
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[tool.poetry]
|
2 |
+
name = "llm-streamlit-demo-basic"
|
3 |
+
version = "0.1.0"
|
4 |
+
description = ""
|
5 |
+
authors = ["Nima Mahmoudi <[email protected]>"]
|
6 |
+
|
7 |
+
[tool.poetry.dependencies]
|
8 |
+
python = ">=3.10.0,<3.11"
|
9 |
+
langchain = "^0.0.321"
|
10 |
+
openai = "^0.28.1"
|
11 |
+
streamlit = "^1.27.2"
|
12 |
+
faiss-cpu = "^1.7.4"
|
13 |
+
tiktoken = "^0.5.1"
|
14 |
+
langchainhub = "^0.1.13"
|
15 |
+
pypdf = "^3.17.0"
|
16 |
+
|
17 |
+
[tool.pyright]
|
18 |
+
# https://github.com/microsoft/pyright/blob/main/docs/configuration.md
|
19 |
+
useLibraryCodeForTypes = true
|
20 |
+
exclude = [".cache"]
|
21 |
+
|
22 |
+
[tool.ruff]
|
23 |
+
# https://beta.ruff.rs/docs/configuration/
|
24 |
+
select = ['E', 'W', 'F', 'I', 'B', 'C4', 'ARG', 'SIM']
|
25 |
+
ignore = ['W291', 'W292', 'W293']
|
26 |
+
|
27 |
+
[build-system]
|
28 |
+
requires = ["poetry-core>=1.0.0"]
|
29 |
+
build-backend = "poetry.core.masonry.api"
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
langchain
|
2 |
+
openai
|
3 |
+
streamlit==1.25.0
|
4 |
+
faiss-cpu
|
5 |
+
tiktoken
|
6 |
+
langchainhub
|
7 |
+
pypdf
|