Spaces:
Runtime error
Runtime error
darthPanda
commited on
Commit
·
41dac9c
1
Parent(s):
5976712
hf6
Browse files- app.py +229 -41
- requirements.txt +1 -0
app.py
CHANGED
@@ -52,6 +52,13 @@ def get_emotion_model():
|
|
52 |
|
53 |
tokenizer_emotion,model_emotion = get_emotion_model()
|
54 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
def extract_text_from_pdf(path):
|
56 |
text=''
|
57 |
reader = PdfReader(path)
|
@@ -81,7 +88,7 @@ if 'filename_key' not in st.session_state:
|
|
81 |
st.session_state.filename_key = ''
|
82 |
|
83 |
st.write("""
|
84 |
-
#
|
85 |
""")
|
86 |
#uploaded_file = st.file_uploader("Choose a PDF file")
|
87 |
#uploaded_file = st.file_uploader("Choose a PDF file", accept_multiple_files=False, type=['pdf'])
|
@@ -147,24 +154,74 @@ elif len(uploaded_file)>0:
|
|
147 |
else:
|
148 |
useful_sentence.append(i)
|
149 |
|
|
|
150 |
del sentences
|
151 |
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
|
|
|
|
|
|
|
|
|
|
164 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
|
166 |
-
df = pd.DataFrame.from_dict(output)
|
167 |
-
df['Sentence']= pd.Series(useful_sentence)
|
168 |
|
169 |
############################ 3. Processing ############################
|
170 |
|
@@ -186,7 +243,10 @@ elif len(uploaded_file)>0:
|
|
186 |
pos_df = pos_df.sort_values('score', ascending=False)
|
187 |
pos_df_mean = pos_df.score.mean()
|
188 |
pos_df['score'] = pos_df['score'].round(4)
|
189 |
-
pos_df.rename(columns = {'Sentence':'Positive Sentences'}, inplace = True)
|
|
|
|
|
|
|
190 |
|
191 |
neg_df = df[df['label']=='negative']
|
192 |
neg_df = neg_df[['score', 'Sentence']]
|
@@ -194,6 +254,9 @@ elif len(uploaded_file)>0:
|
|
194 |
neg_df_mean = neg_df.score.mean()
|
195 |
neg_df['score'] = neg_df['score'].round(4)
|
196 |
neg_df.rename(columns = {'Sentence':'Negative Sentences'}, inplace = True)
|
|
|
|
|
|
|
197 |
|
198 |
neu_df = df[df['label']=='neutral']
|
199 |
neu_df = neu_df[['score', 'Sentence']]
|
@@ -201,16 +264,15 @@ elif len(uploaded_file)>0:
|
|
201 |
#neu_df_mean = neu_df.score.mean()
|
202 |
neu_df['score'] = neu_df['score'].round(4)
|
203 |
neu_df.rename(columns = {'Sentence':'Neutral Sentences'}, inplace = True)
|
|
|
|
|
|
|
204 |
|
205 |
df_temp = neg_df
|
206 |
df_temp = df_temp['score'] * -1
|
207 |
df_temp = pd.concat([df_temp, pos_df])
|
208 |
|
209 |
############################ 3.2. Emotion Analysis ############################
|
210 |
-
|
211 |
-
output_emotion = []
|
212 |
-
for temp in temp_emotion:
|
213 |
-
output_emotion.append(temp[0])
|
214 |
|
215 |
df_emotion = pd.DataFrame.from_dict(output_emotion)
|
216 |
df_emotion['Sentence']= pd.Series(useful_sentence)
|
@@ -250,15 +312,56 @@ elif len(uploaded_file)>0:
|
|
250 |
num_of_surprise_sentences = df_surprise.shape[0]
|
251 |
if num_of_surprise_sentences == 0:
|
252 |
df_surprise.loc[0] = [0.0, '-------No surprised sentences found in report-------']
|
253 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
254 |
############################ 4. Plotting ############################
|
255 |
|
256 |
fig = make_subplots(
|
257 |
-
rows=
|
258 |
specs=[ [None, None, None, None, None, None],
|
259 |
[None, None, None, None, None, None],
|
260 |
-
[None, None, {"type": "indicator", "rowspan": 3, "colspan": 2}, None, None, None],
|
261 |
[None, None, None, None, None, None],
|
|
|
262 |
[None, None, None, None, None, None],
|
263 |
[{"type": "pie", "rowspan": 6, "colspan": 2}, None, {"type": "indicator", "rowspan": 6, "colspan": 2}, None, {"type": "indicator", "rowspan": 6, "colspan": 2}, None],
|
264 |
[None, None, None, None, None, None],
|
@@ -278,9 +381,10 @@ elif len(uploaded_file)>0:
|
|
278 |
[None, None, None, None, None, None],
|
279 |
[None, None, None, None, None, None],
|
280 |
[None, None, None, None, None, None],
|
281 |
-
[None, None, {"type": "indicator", "rowspan": 3, "colspan": 2}, None, None, None],
|
282 |
[None, None, None, None, None, None],
|
283 |
[None, None, None, None, None, None],
|
|
|
|
|
284 |
[None, None, None, None, None, None],
|
285 |
[{"type": "bar", "rowspan": 6, "colspan": 6}, None, None, None, None, None],
|
286 |
[None, None, None, None, None, None],
|
@@ -296,14 +400,37 @@ elif len(uploaded_file)>0:
|
|
296 |
[None, None, None, None, None, None],
|
297 |
[None, None, None, None, None, None],
|
298 |
[None, None, None, None, None, None],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
299 |
],
|
300 |
)
|
301 |
|
302 |
############################ 4.1. Sentiment Analysis ############################
|
|
|
303 |
fig.add_trace(go.Indicator(
|
304 |
mode = "number",
|
305 |
-
value =
|
306 |
-
|
|
|
|
|
307 |
|
308 |
colors = px.colors.diverging.Portland#RdBu
|
309 |
fig.add_trace(go.Pie(labels=labels, values=values, hole = 0.5,
|
@@ -372,15 +499,16 @@ elif len(uploaded_file)>0:
|
|
372 |
)
|
373 |
fig.add_trace(table_trace2, row=18, col=1)
|
374 |
|
375 |
-
fig.add_trace(go.Indicator(
|
376 |
-
mode = "number",
|
377 |
-
value = None,
|
378 |
-
title = {"text": "Emotion Analysis"}), row=24, col=3)
|
379 |
|
380 |
-
############## Under Construction ##############
|
381 |
|
382 |
-
|
383 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
384 |
|
385 |
# Add bar chart
|
386 |
colors_emotions = ['#174ecf', '#cfc517', '#940625', '#17cfcb']
|
@@ -397,9 +525,9 @@ elif len(uploaded_file)>0:
|
|
397 |
marker_color=colors_emotions,
|
398 |
text=annotations,
|
399 |
textfont=dict(size=40)),
|
400 |
-
row=
|
401 |
-
fig.update_xaxes(title_text='Emotions', title_font=dict(size=16), row=
|
402 |
-
fig.update_yaxes(title_text='Number of sentences', title_font=dict(size=16), row=
|
403 |
|
404 |
# df_anger.loc[0] = [0.0, 'None']
|
405 |
# df_anger
|
@@ -409,7 +537,7 @@ elif len(uploaded_file)>0:
|
|
409 |
cells=dict(values=[df_joy[name] for name in df_joy.columns], fill_color='white', align='left'),
|
410 |
columnwidth=[1, 4]
|
411 |
)
|
412 |
-
fig.add_trace(table_trace2, row=
|
413 |
|
414 |
################## sadness table
|
415 |
table_trace2 = go.Table(
|
@@ -417,7 +545,7 @@ elif len(uploaded_file)>0:
|
|
417 |
cells=dict(values=[df_sadness[name] for name in df_sadness.columns], fill_color='white', align='left'),
|
418 |
columnwidth=[1, 4]
|
419 |
)
|
420 |
-
fig.add_trace(table_trace2, row=
|
421 |
|
422 |
################## surprise table
|
423 |
table_trace2 = go.Table(
|
@@ -425,7 +553,7 @@ elif len(uploaded_file)>0:
|
|
425 |
cells=dict(values=[df_surprise[name] for name in df_surprise.columns], fill_color='white', align='left'),
|
426 |
columnwidth=[1, 4]
|
427 |
)
|
428 |
-
fig.add_trace(table_trace2, row=
|
429 |
|
430 |
################## anger table
|
431 |
table_trace2 = go.Table(
|
@@ -433,7 +561,66 @@ elif len(uploaded_file)>0:
|
|
433 |
cells=dict(values=[df_anger[name] for name in df_anger.columns], fill_color='white', align='left'),
|
434 |
columnwidth=[1, 4]
|
435 |
)
|
436 |
-
fig.add_trace(table_trace2, row=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
437 |
|
438 |
import textwrap
|
439 |
if len(title) > 120:
|
@@ -443,7 +630,8 @@ elif len(uploaded_file)>0:
|
|
443 |
# Add HTML tags to force line breaks in the title text
|
444 |
wrapped_title = "<br>".join(wrapped_title.split("\n"))
|
445 |
|
446 |
-
fig.update_layout(height=
|
|
|
447 |
|
448 |
#pyo.plot(fig, filename='report.html')
|
449 |
|
|
|
52 |
|
53 |
tokenizer_emotion,model_emotion = get_emotion_model()
|
54 |
|
55 |
+
@st.cache(allow_output_mutation=True)
|
56 |
+
def get_intent_model():
|
57 |
+
classifier = pipeline("zero-shot-classification", model='cross-encoder/nli-deberta-v3-small')
|
58 |
+
return classifier
|
59 |
+
|
60 |
+
intent_classifier = get_intent_model()
|
61 |
+
|
62 |
def extract_text_from_pdf(path):
|
63 |
text=''
|
64 |
reader = PdfReader(path)
|
|
|
88 |
st.session_state.filename_key = ''
|
89 |
|
90 |
st.write("""
|
91 |
+
# Dcoument Analysis Tool
|
92 |
""")
|
93 |
#uploaded_file = st.file_uploader("Choose a PDF file")
|
94 |
#uploaded_file = st.file_uploader("Choose a PDF file", accept_multiple_files=False, type=['pdf'])
|
|
|
154 |
else:
|
155 |
useful_sentence.append(i)
|
156 |
|
157 |
+
useful_sentence_len = len(useful_sentence)
|
158 |
del sentences
|
159 |
|
160 |
+
############################ 2.1 Sentiment Modeling ############################
|
161 |
+
placeholder1 = st.empty()
|
162 |
+
placeholder1.text('Performing Sentiment Analysis...')
|
163 |
+
|
164 |
+
#with st.empty():
|
165 |
+
my_bar = st.progress(0)
|
166 |
+
tokenizer = tokenizer_sentiment
|
167 |
+
model = model_sentiment
|
168 |
+
pipe = pipeline(model="ProsusAI/finbert")
|
169 |
+
classifier = pipeline(model="ProsusAI/finbert")
|
170 |
+
#output = classifier(useful_sentence)
|
171 |
+
output=[]
|
172 |
+
i=0
|
173 |
+
for temp in useful_sentence:
|
174 |
+
output.extend(classifier(temp))
|
175 |
+
i=i+1
|
176 |
+
my_bar.progress(int((i/useful_sentence_len)*100))
|
177 |
|
178 |
+
my_bar.empty()
|
179 |
+
df = pd.DataFrame.from_dict(output)
|
180 |
+
df['Sentence']= pd.Series(useful_sentence)
|
181 |
+
|
182 |
+
############################ 2.2 Emotion Modeling ############################
|
183 |
+
#placeholder2 = st.empty()
|
184 |
+
placeholder1.text('Performing Emotion Analysis...')
|
185 |
+
|
186 |
+
# with st.empty():
|
187 |
+
my_bar = st.progress(0)
|
188 |
+
tokenizer = tokenizer_emotion
|
189 |
+
model = model_emotion
|
190 |
+
classifier = pipeline("text-classification", model="j-hartmann/emotion-english-distilroberta-base", top_k=1)
|
191 |
+
output_emotion = []
|
192 |
+
i=0
|
193 |
+
for temp in useful_sentence:
|
194 |
+
output_emotion.extend(classifier(temp)[0])
|
195 |
+
i=i+1
|
196 |
+
my_bar.progress(int((i/useful_sentence_len)*100))
|
197 |
+
|
198 |
+
my_bar.empty()
|
199 |
+
placeholder1.text('Emotion Analysis Completed')
|
200 |
+
|
201 |
+
############################ 2.3 Intent Modeling ############################
|
202 |
+
placeholder1.text('Performing Intent Analysis...')
|
203 |
+
|
204 |
+
my_bar = st.progress(0)
|
205 |
+
candidate_labels = ['complaint', 'suggestion', 'query']
|
206 |
+
classifier = intent_classifier
|
207 |
+
# temp_intent = classifier(useful_sentence, candidate_labels)
|
208 |
+
# output_intent=[]
|
209 |
+
# for temp in temp_intent:
|
210 |
+
# output_intent.append({'label' : temp['labels'][0], 'score' : temp['scores'][0]})
|
211 |
+
output_intent=[]
|
212 |
+
i=0
|
213 |
+
for temp1 in useful_sentence:
|
214 |
+
temp = classifier(temp1, candidate_labels)
|
215 |
+
output_intent.append({'label' : temp['labels'][0], 'score' : temp['scores'][0]})
|
216 |
+
i=i+1
|
217 |
+
my_bar.progress(int((i/useful_sentence_len)*100))
|
218 |
+
df_intent = pd.DataFrame.from_dict(output_intent)
|
219 |
+
df_intent['Sentence']= pd.Series(useful_sentence)
|
220 |
+
|
221 |
+
my_bar.empty()
|
222 |
+
placeholder1.text('Processing Completed')
|
223 |
+
|
224 |
|
|
|
|
|
225 |
|
226 |
############################ 3. Processing ############################
|
227 |
|
|
|
243 |
pos_df = pos_df.sort_values('score', ascending=False)
|
244 |
pos_df_mean = pos_df.score.mean()
|
245 |
pos_df['score'] = pos_df['score'].round(4)
|
246 |
+
pos_df.rename(columns = {'Sentence':'Positive Sentences'}, inplace = True)
|
247 |
+
num_of_pos_sentences = pos_df.shape[0]
|
248 |
+
if num_of_pos_sentences == 0:
|
249 |
+
pos_df.loc[0] = [0.0, '-------No positive sentences found in report-------']
|
250 |
|
251 |
neg_df = df[df['label']=='negative']
|
252 |
neg_df = neg_df[['score', 'Sentence']]
|
|
|
254 |
neg_df_mean = neg_df.score.mean()
|
255 |
neg_df['score'] = neg_df['score'].round(4)
|
256 |
neg_df.rename(columns = {'Sentence':'Negative Sentences'}, inplace = True)
|
257 |
+
num_of_neg_sentences = neg_df.shape[0]
|
258 |
+
if num_of_neg_sentences == 0:
|
259 |
+
neg_df.loc[0] = [0.0, '-------No negative sentences found in report-------']
|
260 |
|
261 |
neu_df = df[df['label']=='neutral']
|
262 |
neu_df = neu_df[['score', 'Sentence']]
|
|
|
264 |
#neu_df_mean = neu_df.score.mean()
|
265 |
neu_df['score'] = neu_df['score'].round(4)
|
266 |
neu_df.rename(columns = {'Sentence':'Neutral Sentences'}, inplace = True)
|
267 |
+
num_of_neu_sentences = neu_df.shape[0]
|
268 |
+
if num_of_neu_sentences == 0:
|
269 |
+
neu_df.loc[0] = [0.0, '-------No neutral sentences found in report-------']
|
270 |
|
271 |
df_temp = neg_df
|
272 |
df_temp = df_temp['score'] * -1
|
273 |
df_temp = pd.concat([df_temp, pos_df])
|
274 |
|
275 |
############################ 3.2. Emotion Analysis ############################
|
|
|
|
|
|
|
|
|
276 |
|
277 |
df_emotion = pd.DataFrame.from_dict(output_emotion)
|
278 |
df_emotion['Sentence']= pd.Series(useful_sentence)
|
|
|
312 |
num_of_surprise_sentences = df_surprise.shape[0]
|
313 |
if num_of_surprise_sentences == 0:
|
314 |
df_surprise.loc[0] = [0.0, '-------No surprised sentences found in report-------']
|
315 |
+
|
316 |
+
df_temp_emotion = df_sadness
|
317 |
+
df_temp_emotion = pd.concat([df_sadness, df_anger])
|
318 |
+
df_temp_emotion = df_temp_emotion['score'] * -1
|
319 |
+
df_temp_emotion = pd.concat([df_temp_emotion, df_joy])
|
320 |
+
|
321 |
+
|
322 |
+
############################ 3.3. Intent Analysis ############################
|
323 |
+
df_query = df_intent[df_intent['label']=='query']
|
324 |
+
df_query = df_query[['score', 'Sentence']]
|
325 |
+
df_query = df_query.sort_values('score', ascending=False)
|
326 |
+
df_query['score'] = df_query['score'].round(4)
|
327 |
+
df_query.rename(columns = {'Sentence':'Queries'}, inplace = True)
|
328 |
+
df_query = df_query[df_query['score']>0.5]
|
329 |
+
num_of_queries = df_query.shape[0]
|
330 |
+
if num_of_queries == 0:
|
331 |
+
df_query.loc[0] = [0.0, '-------No queries found in report-------']
|
332 |
+
|
333 |
+
df_complaint = df_intent[df_intent['label']=='complaint']
|
334 |
+
df_complaint = df_complaint[['score', 'Sentence']]
|
335 |
+
df_complaint = df_complaint.sort_values('score', ascending=False)
|
336 |
+
df_complaint['score'] = df_complaint['score'].round(4)
|
337 |
+
df_complaint.rename(columns = {'Sentence':'Complaints'}, inplace = True)
|
338 |
+
df_complaint = df_complaint[df_complaint['score']>0.5]
|
339 |
+
num_of_complaints = df_complaint.shape[0]
|
340 |
+
if num_of_complaints == 0:
|
341 |
+
df_complaint.loc[0] = [0.0, '-------No complaints found in report-------']
|
342 |
+
|
343 |
+
df_suggestion = df_intent[df_intent['label']=='suggestion']
|
344 |
+
df_suggestion = df_suggestion[['score', 'Sentence']]
|
345 |
+
df_suggestion = df_suggestion.sort_values('score', ascending=False)
|
346 |
+
df_suggestion['score'] = df_suggestion['score'].round(4)
|
347 |
+
df_suggestion.rename(columns = {'Sentence':'Suggestions'}, inplace = True)
|
348 |
+
df_suggestion = df_suggestion[df_suggestion['score']>0.5]
|
349 |
+
num_of_suggestions = df_suggestion.shape[0]
|
350 |
+
if num_of_suggestions == 0:
|
351 |
+
df_suggestion.loc[0] = [0.0, '-------No suggestions found in report-------']
|
352 |
+
|
353 |
+
total_num_of_intent = num_of_queries + num_of_complaints + num_of_suggestions
|
354 |
+
|
355 |
+
|
356 |
+
|
357 |
############################ 4. Plotting ############################
|
358 |
|
359 |
fig = make_subplots(
|
360 |
+
rows=62, cols=6,
|
361 |
specs=[ [None, None, None, None, None, None],
|
362 |
[None, None, None, None, None, None],
|
|
|
363 |
[None, None, None, None, None, None],
|
364 |
+
[None, None, {"type": "indicator", "rowspan": 3, "colspan": 2}, None, None, None],
|
365 |
[None, None, None, None, None, None],
|
366 |
[{"type": "pie", "rowspan": 6, "colspan": 2}, None, {"type": "indicator", "rowspan": 6, "colspan": 2}, None, {"type": "indicator", "rowspan": 6, "colspan": 2}, None],
|
367 |
[None, None, None, None, None, None],
|
|
|
381 |
[None, None, None, None, None, None],
|
382 |
[None, None, None, None, None, None],
|
383 |
[None, None, None, None, None, None],
|
|
|
384 |
[None, None, None, None, None, None],
|
385 |
[None, None, None, None, None, None],
|
386 |
+
[None, None, {"type": "indicator", "rowspan": 3, "colspan": 2}, None, None, None],
|
387 |
+
[None, None, None, None, None, None],
|
388 |
[None, None, None, None, None, None],
|
389 |
[{"type": "bar", "rowspan": 6, "colspan": 6}, None, None, None, None, None],
|
390 |
[None, None, None, None, None, None],
|
|
|
400 |
[None, None, None, None, None, None],
|
401 |
[None, None, None, None, None, None],
|
402 |
[None, None, None, None, None, None],
|
403 |
+
[None, None, None, None, None, None],
|
404 |
+
[None, None, {"type": "indicator", "rowspan": 3, "colspan": 2}, None, None, None],
|
405 |
+
[None, None, None, None, None, None],
|
406 |
+
[None, None, None, None, None, None],
|
407 |
+
[None, {"type": "indicator", "rowspan": 2, "colspan": 5}, None, None, None, None],#first bullet
|
408 |
+
[None, None, None, None, None, None],
|
409 |
+
[None, None, None, None, None, None],
|
410 |
+
[None, {"type": "indicator", "rowspan": 2, "colspan": 5}, None, None, None, None], #2nd bullet
|
411 |
+
[None, None, None, None, None, None],
|
412 |
+
[None, None, None, None, None, None],
|
413 |
+
[None, {"type": "indicator", "rowspan": 2, "colspan": 5}, None, None, None, None],
|
414 |
+
[None, None, None, None, None, None],
|
415 |
+
[None, None, None, None, None, None],
|
416 |
+
[{"type": "table", "rowspan": 4, "colspan": 2}, None, {"type": "table", "rowspan": 4, "colspan": 2}, None, {"type": "table", "rowspan": 4, "colspan": 2}, None],
|
417 |
+
[None, None, None, None, None, None],
|
418 |
+
[None, None, None, None, None, None],
|
419 |
+
[None, None, None, None, None, None],
|
420 |
+
[None, None, None, None, None, None],
|
421 |
+
[None, None, None, None, None, None],
|
422 |
+
[None, None, None, None, None, None],
|
423 |
],
|
424 |
)
|
425 |
|
426 |
############################ 4.1. Sentiment Analysis ############################
|
427 |
+
|
428 |
fig.add_trace(go.Indicator(
|
429 |
mode = "number",
|
430 |
+
value = int(df_temp.score.mean()*100),
|
431 |
+
number = {"suffix": "%"},
|
432 |
+
title = {"text": "<span style='font-size:1.5em'>Sentiment Analysis</span><br><span style='font-size:0.8em;color:gray'>Positivity Score</span>"}
|
433 |
+
), row=4, col=3)
|
434 |
|
435 |
colors = px.colors.diverging.Portland#RdBu
|
436 |
fig.add_trace(go.Pie(labels=labels, values=values, hole = 0.5,
|
|
|
499 |
)
|
500 |
fig.add_trace(table_trace2, row=18, col=1)
|
501 |
|
|
|
|
|
|
|
|
|
502 |
|
|
|
503 |
|
504 |
+
########################### 4.2. Emotion Analysis ###########################
|
505 |
+
|
506 |
+
fig.add_trace(go.Indicator(
|
507 |
+
mode = "number",
|
508 |
+
value = int(df_temp_emotion.score.mean()*100),
|
509 |
+
number = {"suffix": "%"},
|
510 |
+
title = {"text": "<span style='font-size:1.5em'>Emotion Analysis</span><br><span style='font-size:0.8em;color:gray'>Happiness Score</span>"}
|
511 |
+
), row=26, col=3)
|
512 |
|
513 |
# Add bar chart
|
514 |
colors_emotions = ['#174ecf', '#cfc517', '#940625', '#17cfcb']
|
|
|
525 |
marker_color=colors_emotions,
|
526 |
text=annotations,
|
527 |
textfont=dict(size=40)),
|
528 |
+
row=29, col=1)
|
529 |
+
fig.update_xaxes(title_text='Emotions', title_font=dict(size=16), row=29, col=1)
|
530 |
+
fig.update_yaxes(title_text='Number of sentences', title_font=dict(size=16), row=29, col=1)
|
531 |
|
532 |
# df_anger.loc[0] = [0.0, 'None']
|
533 |
# df_anger
|
|
|
537 |
cells=dict(values=[df_joy[name] for name in df_joy.columns], fill_color='white', align='left'),
|
538 |
columnwidth=[1, 4]
|
539 |
)
|
540 |
+
fig.add_trace(table_trace2, row=36, col=1)
|
541 |
|
542 |
################## sadness table
|
543 |
table_trace2 = go.Table(
|
|
|
545 |
cells=dict(values=[df_sadness[name] for name in df_sadness.columns], fill_color='white', align='left'),
|
546 |
columnwidth=[1, 4]
|
547 |
)
|
548 |
+
fig.add_trace(table_trace2, row=36, col=4)
|
549 |
|
550 |
################## surprise table
|
551 |
table_trace2 = go.Table(
|
|
|
553 |
cells=dict(values=[df_surprise[name] for name in df_surprise.columns], fill_color='white', align='left'),
|
554 |
columnwidth=[1, 4]
|
555 |
)
|
556 |
+
fig.add_trace(table_trace2, row=39, col=1)
|
557 |
|
558 |
################## anger table
|
559 |
table_trace2 = go.Table(
|
|
|
561 |
cells=dict(values=[df_anger[name] for name in df_anger.columns], fill_color='white', align='left'),
|
562 |
columnwidth=[1, 4]
|
563 |
)
|
564 |
+
fig.add_trace(table_trace2, row=39, col=4)
|
565 |
+
|
566 |
+
|
567 |
+
|
568 |
+
########################### 4.3. Intent Analysis ###########################
|
569 |
+
|
570 |
+
fig.add_trace(go.Indicator(
|
571 |
+
mode = "number",
|
572 |
+
value = round(num_of_suggestions/max(num_of_complaints,0), 2),
|
573 |
+
number = {"suffix": ""},
|
574 |
+
title = {"text": "<span style='font-size:1.5em'>Intent Analysis</span><br><span style='font-size:0.8em;color:gray'>Suggestion/Complaint Ratio</span>"}
|
575 |
+
), row=44, col=3)
|
576 |
+
|
577 |
+
fig.add_trace(go.Indicator(
|
578 |
+
mode = "number+gauge",
|
579 |
+
gauge = {'shape': "bullet", 'axis': {'range': [None, total_num_of_intent]}, 'bar': {'color': "blue"}},
|
580 |
+
#delta = {'reference': 300},
|
581 |
+
value = num_of_queries,
|
582 |
+
#domain = {'x': [0.5, 1], 'y': [0.3, 0.9]},
|
583 |
+
title = {'text': "Queries"}), row=47, col=2)
|
584 |
+
|
585 |
+
fig.add_trace(go.Indicator(
|
586 |
+
mode = "number+gauge",
|
587 |
+
gauge = {'shape': "bullet", 'axis': {'range': [None, total_num_of_intent]},},
|
588 |
+
#delta = {'reference': 300},
|
589 |
+
value = num_of_suggestions,
|
590 |
+
#domain = {'x': [0.5, 1], 'y': [0.3, 0.9]},
|
591 |
+
title = {'text': "Suggestions"}), row=50, col=2)
|
592 |
+
|
593 |
+
fig.add_trace(go.Indicator(
|
594 |
+
mode = "number+gauge",
|
595 |
+
gauge = {'shape': "bullet", 'axis': {'range': [None, total_num_of_intent]}, 'bar': {'color': "red"}},
|
596 |
+
#delta = {'reference': 300},
|
597 |
+
value = num_of_complaints,
|
598 |
+
#domain = {'x': [0.5, 1], 'y': [0.3, 0.9]},
|
599 |
+
title = {'text': "Complaints"}), row=53, col=2)
|
600 |
+
|
601 |
+
############ query table
|
602 |
+
table_trace2 = go.Table(
|
603 |
+
header=dict(values=list(df_query.columns), fill_color='lightgray', align='left'),
|
604 |
+
cells=dict(values=[df_query[name] for name in df_query.columns], fill_color='white', align='left'),
|
605 |
+
columnwidth=[1, 4]
|
606 |
+
)
|
607 |
+
fig.add_trace(table_trace2, row=56, col=1)
|
608 |
+
|
609 |
+
############ complaints table
|
610 |
+
table_trace2 = go.Table(
|
611 |
+
header=dict(values=list(df_complaint.columns), fill_color='lightgray', align='left'),
|
612 |
+
cells=dict(values=[df_complaint[name] for name in df_complaint.columns], fill_color='white', align='left'),
|
613 |
+
columnwidth=[1, 4]
|
614 |
+
)
|
615 |
+
fig.add_trace(table_trace2, row=56, col=3)
|
616 |
+
|
617 |
+
############ suggestions table
|
618 |
+
table_trace2 = go.Table(
|
619 |
+
header=dict(values=list(df_suggestion.columns), fill_color='lightgray', align='left'),
|
620 |
+
cells=dict(values=[df_suggestion[name] for name in df_suggestion.columns], fill_color='white', align='left'),
|
621 |
+
columnwidth=[1, 4]
|
622 |
+
)
|
623 |
+
fig.add_trace(table_trace2, row=56, col=5)
|
624 |
|
625 |
import textwrap
|
626 |
if len(title) > 120:
|
|
|
630 |
# Add HTML tags to force line breaks in the title text
|
631 |
wrapped_title = "<br>".join(wrapped_title.split("\n"))
|
632 |
|
633 |
+
fig.update_layout(height=4000, showlegend=False, title={'text': f"<b>{wrapped_title} - Text Analysis Report</b>", 'x': 0.5, 'xanchor': 'center','font': {'size': 32}})
|
634 |
+
|
635 |
|
636 |
#pyo.plot(fig, filename='report.html')
|
637 |
|
requirements.txt
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
streamlit==1.17.0
|
2 |
transformers
|
|
|
3 |
torch
|
4 |
PyPDF2
|
5 |
nltk
|
|
|
1 |
streamlit==1.17.0
|
2 |
transformers
|
3 |
+
sentencepiece
|
4 |
torch
|
5 |
PyPDF2
|
6 |
nltk
|