Spaces:
Runtime error
Runtime error
Commit
·
e0ed1f1
1
Parent(s):
b2b6846
hf
Browse files- app.py +41 -22
- requirements.txt +1 -1
app.py
CHANGED
|
@@ -37,12 +37,20 @@ from transformers import pipeline
|
|
| 37 |
|
| 38 |
#@st.cache_resource()
|
| 39 |
@st.cache(allow_output_mutation=True)
|
| 40 |
-
def
|
| 41 |
tokenizer = AutoTokenizer.from_pretrained("ProsusAI/finbert")
|
| 42 |
model = AutoModelForSequenceClassification.from_pretrained("ProsusAI/finbert")
|
| 43 |
return tokenizer,model
|
| 44 |
|
| 45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
|
| 47 |
def extract_text_from_pdf(path):
|
| 48 |
text=''
|
|
@@ -69,6 +77,9 @@ def download_html():
|
|
| 69 |
st.download_button(label="Download Report", data=html, file_name=file_name, mime=mime_type)
|
| 70 |
st.stop()
|
| 71 |
|
|
|
|
|
|
|
|
|
|
| 72 |
st.write("""
|
| 73 |
# Sentiment Analysis Tool
|
| 74 |
""")
|
|
@@ -76,22 +87,29 @@ st.write("""
|
|
| 76 |
#uploaded_file = st.file_uploader("Choose a PDF file", accept_multiple_files=False, type=['pdf'])
|
| 77 |
uploaded_file = st.file_uploader("Choose a PDF file", accept_multiple_files=True, type=['pdf'])
|
| 78 |
#if uploaded_file is not None:
|
| 79 |
-
if len(uploaded_file)
|
|
|
|
|
|
|
|
|
|
| 80 |
import time
|
| 81 |
-
|
| 82 |
# Wait for 5 seconds
|
| 83 |
time.sleep(5)
|
| 84 |
-
|
| 85 |
pdf_reader = PyPDF2.PdfReader(uploaded_file[0])
|
| 86 |
-
# Get the number of pages in the PDF file
|
| 87 |
num_pages = len(pdf_reader.pages)
|
|
|
|
| 88 |
|
|
|
|
|
|
|
|
|
|
| 89 |
if num_pages > 20:
|
| 90 |
st.error("Pages in PDF file should be less than 20.")
|
| 91 |
# Check that only one file was uploaded
|
| 92 |
#elif isinstance(uploaded_file, list):
|
| 93 |
elif len(uploaded_file) > 1:
|
| 94 |
st.error("Please upload only one PDF file at a time.")
|
|
|
|
|
|
|
| 95 |
else:
|
| 96 |
#uploaded_file = uploaded_file[0]
|
| 97 |
# Check that the file is a PDF
|
|
@@ -132,14 +150,23 @@ if len(uploaded_file)>0:
|
|
| 132 |
|
| 133 |
with st.spinner('Processing please wait...'):
|
| 134 |
|
|
|
|
|
|
|
| 135 |
pipe = pipeline(model="ProsusAI/finbert")
|
| 136 |
-
|
| 137 |
classifier = pipeline(model="ProsusAI/finbert")
|
| 138 |
output = classifier(useful_sentence)
|
| 139 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 140 |
df = pd.DataFrame.from_dict(output)
|
| 141 |
df['Sentence']= pd.Series(useful_sentence)
|
| 142 |
|
|
|
|
|
|
|
| 143 |
labels = ['neutral', 'positive', 'negative']
|
| 144 |
values = df.label.value_counts().to_list()
|
| 145 |
|
|
@@ -178,6 +205,8 @@ if len(uploaded_file)>0:
|
|
| 178 |
df_temp = pd.concat([df_temp, pos_df])
|
| 179 |
|
| 180 |
|
|
|
|
|
|
|
| 181 |
fig = make_subplots(
|
| 182 |
rows=26, cols=6,
|
| 183 |
specs=[ [None, None, None, None, None, None],
|
|
@@ -279,31 +308,21 @@ if len(uploaded_file)>0:
|
|
| 279 |
# Add HTML tags to force line breaks in the title text
|
| 280 |
wrapped_title = "<br>".join(wrapped_title.split("\n"))
|
| 281 |
|
| 282 |
-
fig.update_layout(height=
|
| 283 |
|
| 284 |
#pyo.plot(fig, filename='report.html')
|
| 285 |
|
|
|
|
|
|
|
| 286 |
buffer = io.StringIO()
|
| 287 |
fig.write_html(buffer, include_plotlyjs='cdn')
|
| 288 |
html_bytes = buffer.getvalue().encode()
|
| 289 |
|
| 290 |
st.download_button(
|
| 291 |
-
label='Download
|
| 292 |
data=html_bytes,
|
| 293 |
file_name='report.html',
|
| 294 |
mime='text/html'
|
| 295 |
)
|
| 296 |
|
| 297 |
-
|
| 298 |
-
# import base64
|
| 299 |
-
|
| 300 |
-
# # Convert the figure to HTML format
|
| 301 |
-
# fig_html = pio.to_html(fig, full_html=False)
|
| 302 |
-
# b64 = base64.b64encode(fig_html.encode()).decode()
|
| 303 |
-
|
| 304 |
-
# # Generate a download link
|
| 305 |
-
# filename = "figure.html"
|
| 306 |
-
# href = f'<a href="data:file/html;base64,{b64}" download="{filename}">Download Report</a>'
|
| 307 |
-
|
| 308 |
-
# # Display the link
|
| 309 |
-
# st.markdown(href, unsafe_allow_html=True)
|
|
|
|
| 37 |
|
| 38 |
#@st.cache_resource()
|
| 39 |
@st.cache(allow_output_mutation=True)
|
| 40 |
+
def get_sentiment_model():
|
| 41 |
tokenizer = AutoTokenizer.from_pretrained("ProsusAI/finbert")
|
| 42 |
model = AutoModelForSequenceClassification.from_pretrained("ProsusAI/finbert")
|
| 43 |
return tokenizer,model
|
| 44 |
|
| 45 |
+
tokenizer_sentiment,model_sentiment = get_sentiment_model()
|
| 46 |
+
|
| 47 |
+
@st.cache(allow_output_mutation=True)
|
| 48 |
+
def get_emotion_model():
|
| 49 |
+
tokenizer = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
|
| 50 |
+
model = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
|
| 51 |
+
return tokenizer,model
|
| 52 |
+
|
| 53 |
+
tokenizer_emotion,model_emotion = get_emotion_model()
|
| 54 |
|
| 55 |
def extract_text_from_pdf(path):
|
| 56 |
text=''
|
|
|
|
| 77 |
st.download_button(label="Download Report", data=html, file_name=file_name, mime=mime_type)
|
| 78 |
st.stop()
|
| 79 |
|
| 80 |
+
if 'filename_key' not in st.session_state:
|
| 81 |
+
st.session_state.filename_key = ''
|
| 82 |
+
|
| 83 |
st.write("""
|
| 84 |
# Sentiment Analysis Tool
|
| 85 |
""")
|
|
|
|
| 87 |
#uploaded_file = st.file_uploader("Choose a PDF file", accept_multiple_files=False, type=['pdf'])
|
| 88 |
uploaded_file = st.file_uploader("Choose a PDF file", accept_multiple_files=True, type=['pdf'])
|
| 89 |
#if uploaded_file is not None:
|
| 90 |
+
if len(uploaded_file)==0:
|
| 91 |
+
#print('none')
|
| 92 |
+
st.session_state.filename_key = ''
|
| 93 |
+
elif len(uploaded_file)>0:
|
| 94 |
import time
|
|
|
|
| 95 |
# Wait for 5 seconds
|
| 96 |
time.sleep(5)
|
| 97 |
+
|
| 98 |
pdf_reader = PyPDF2.PdfReader(uploaded_file[0])
|
|
|
|
| 99 |
num_pages = len(pdf_reader.pages)
|
| 100 |
+
file_name = uploaded_file[0].name
|
| 101 |
|
| 102 |
+
# st.write(st.session_state.filename_key)
|
| 103 |
+
# print(file_name)
|
| 104 |
+
# st.write("Filename:", file_name)
|
| 105 |
if num_pages > 20:
|
| 106 |
st.error("Pages in PDF file should be less than 20.")
|
| 107 |
# Check that only one file was uploaded
|
| 108 |
#elif isinstance(uploaded_file, list):
|
| 109 |
elif len(uploaded_file) > 1:
|
| 110 |
st.error("Please upload only one PDF file at a time.")
|
| 111 |
+
elif st.session_state.filename_key == file_name:
|
| 112 |
+
st.write("Report downloaded successfully")
|
| 113 |
else:
|
| 114 |
#uploaded_file = uploaded_file[0]
|
| 115 |
# Check that the file is a PDF
|
|
|
|
| 150 |
|
| 151 |
with st.spinner('Processing please wait...'):
|
| 152 |
|
| 153 |
+
tokenizer = tokenizer_sentiment
|
| 154 |
+
model = model_sentiment
|
| 155 |
pipe = pipeline(model="ProsusAI/finbert")
|
|
|
|
| 156 |
classifier = pipeline(model="ProsusAI/finbert")
|
| 157 |
output = classifier(useful_sentence)
|
| 158 |
|
| 159 |
+
tokenizer = tokenizer_emotion
|
| 160 |
+
model = model_emotion
|
| 161 |
+
classifier = pipeline("text-classification", model="j-hartmann/emotion-english-distilroberta-base", top_k=1)
|
| 162 |
+
output_emotion = classifier(useful_sentence)
|
| 163 |
+
#print(output_emotion[0])
|
| 164 |
+
|
| 165 |
df = pd.DataFrame.from_dict(output)
|
| 166 |
df['Sentence']= pd.Series(useful_sentence)
|
| 167 |
|
| 168 |
+
############################ 3. Processing ############################
|
| 169 |
+
|
| 170 |
labels = ['neutral', 'positive', 'negative']
|
| 171 |
values = df.label.value_counts().to_list()
|
| 172 |
|
|
|
|
| 205 |
df_temp = pd.concat([df_temp, pos_df])
|
| 206 |
|
| 207 |
|
| 208 |
+
############################ 4. Plotting ############################
|
| 209 |
+
|
| 210 |
fig = make_subplots(
|
| 211 |
rows=26, cols=6,
|
| 212 |
specs=[ [None, None, None, None, None, None],
|
|
|
|
| 308 |
# Add HTML tags to force line breaks in the title text
|
| 309 |
wrapped_title = "<br>".join(wrapped_title.split("\n"))
|
| 310 |
|
| 311 |
+
fig.update_layout(height=1500, showlegend=False, title={'text': f"<b>{wrapped_title} - Sentiment Analysis Report</b>", 'x': 0.5, 'xanchor': 'center','font': {'size': 32}})
|
| 312 |
|
| 313 |
#pyo.plot(fig, filename='report.html')
|
| 314 |
|
| 315 |
+
############################## 5. Download Report ##############################
|
| 316 |
+
|
| 317 |
buffer = io.StringIO()
|
| 318 |
fig.write_html(buffer, include_plotlyjs='cdn')
|
| 319 |
html_bytes = buffer.getvalue().encode()
|
| 320 |
|
| 321 |
st.download_button(
|
| 322 |
+
label='Download Report',
|
| 323 |
data=html_bytes,
|
| 324 |
file_name='report.html',
|
| 325 |
mime='text/html'
|
| 326 |
)
|
| 327 |
|
| 328 |
+
st.session_state.filename_key = file_name
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
streamlit
|
| 2 |
transformers
|
| 3 |
torch
|
| 4 |
PyPDF2
|
|
|
|
| 1 |
+
streamlit==1.17.0
|
| 2 |
transformers
|
| 3 |
torch
|
| 4 |
PyPDF2
|