embedding_models = [ # STS_Average NLI_Average Clustering_Average Retrieval_Average Weighted_Average Rank "Alibaba-NLP/gte-Qwen2-7B-instruct-fp16", # 85.55 79.48 67.34 74.15 65.5 1 "intfloat/multilingual-e5-large-instruct", # 82.24 65.69 70.4 71.74 63.82 2 "dragonkue/snowflake-arctic-embed-l-v2.0-ko", # 81.9 60.21 63.82 78.13 63.11 3 "nlpai-lab/KURE-v1", # 83.37 64.79 61.6 75.67 62.22 4 "kakaocorp/kanana-nano-2.1b-embedding-fp16", # 83.26 66.86 59.68 75.32 61.68 5 "McGill-NLP/LLM2Vec-Meta-Llama-3-8B-Instruct-mntp-supervised-bf16", # 79.97 67.21 65.2 69.63 61.3 6 "nlpai-lab/KoE5", # 81.36 60.27 60.39 75.18 60.93 7 "BAAI/bge-multilingual-gemma2-fp16", # 83.78 76.44 58.76 70.46 60.88 8 "BAAI/bge-m3", # 83.46 65.32 58.27 73.55 60.47 9 "Snowflake/snowflake-arctic-embed-l-v2.0", # 76.89 58.95 58.94 75.56 59.93 10 "dragonkue/BGE-m3-ko", # 84.1 62.01 55.47 75.44 59.87 11 "FronyAI/frony-embed-medium-ko-v1", # 79.44 60.53 58.26 72.46 59.13 12 "facebook/drama-1b-fp16", # 80.76 61.09 51.1 70.92 56.43 13 "upskyy/bge-m3-korean", # 84.67 70.82 42.74 67.91 ] # 기출문제 기반 질의응답(STS, NLI, 인스트럭션 성능): gte-Qwen2-7B-instruct or e5-large-instruct # 법령, 시행령, 시행규칙(긴 문장, 법령 텍스트 클러스터링/검색): snowflake-arctic-embed-l-v2.0-ko / KURE-v1