Update app.py
Browse files
app.py
CHANGED
@@ -1,79 +1,80 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import spaces
|
3 |
-
import torch
|
4 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
5 |
-
# from retriever.vectordb_rerank import search_documents # ๐ง RAG ๊ฒ์๊ธฐ ๋ถ๋ฌ์ค๊ธฐ
|
6 |
-
from services.rag_pipeline import rag_pipeline
|
7 |
-
|
8 |
-
model_name = "dasomaru/gemma-3-4bit-it-demo"
|
9 |
-
|
10 |
-
|
11 |
-
# 1. ๋ชจ๋ธ/ํ ํฌ๋์ด์ 1ํ ๋ก๋ฉ
|
12 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
13 |
-
# ๐ model์ CPU๋ก๋ง ๋จผ์ ์ฌ๋ฆผ (GPU ์์ง ์์)
|
14 |
-
model = AutoModelForCausalLM.from_pretrained(
|
15 |
-
model_name,
|
16 |
-
torch_dtype=torch.float16, # 4bit model์ด๋๊น
|
17 |
-
device_map="auto", # โ
์ค์: ์๋์ผ๋ก GPU ํ ๋น
|
18 |
-
trust_remote_code=True,
|
19 |
-
)
|
20 |
-
|
21 |
-
# 2. ์บ์ ๊ด๋ฆฌ
|
22 |
-
search_cache = {}
|
23 |
-
|
24 |
-
@spaces.GPU(duration=300)
|
25 |
-
def generate_response(query: str):
|
26 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
27 |
-
"dasomaru/gemma-3-4bit-it-demo",
|
28 |
-
trust_remote_code=True,
|
29 |
-
)
|
30 |
-
model = AutoModelForCausalLM.from_pretrained(
|
31 |
-
"dasomaru/gemma-3-4bit-it-demo",
|
32 |
-
torch_dtype=torch.float16, # 4bit model์ด๋๊น
|
33 |
-
device_map="auto", # โ
์ค์: ์๋์ผ๋ก GPU ํ ๋น
|
34 |
-
trust_remote_code=True,
|
35 |
-
|
36 |
-
)
|
37 |
-
model.to("cuda")
|
38 |
-
|
39 |
-
if query in search_cache:
|
40 |
-
print(f"โก ์บ์ ์ฌ์ฉ: '{query}'")
|
41 |
-
return search_cache[query]
|
42 |
-
|
43 |
-
# ๐ฅ rag_pipeline์ ํธ์ถํด์ ๊ฒ์ + ์์ฑ
|
44 |
-
# ๊ฒ์
|
45 |
-
top_k = 5
|
46 |
-
results = rag_pipeline(query, top_k=top_k)
|
47 |
-
|
48 |
-
# ๊ฒฐ๊ณผ๊ฐ list์ผ ๊ฒฝ์ฐ ํฉ์น๊ธฐ
|
49 |
-
if isinstance(results, list):
|
50 |
-
results = "\n\n".join(results)
|
51 |
-
|
52 |
-
search_cache[query] = results
|
53 |
-
# return results
|
54 |
-
|
55 |
-
inputs = tokenizer(results, return_tensors="pt").to(model.device) # โ
model.device
|
56 |
-
outputs = model.generate(
|
57 |
-
**inputs,
|
58 |
-
max_new_tokens=512,
|
59 |
-
temperature=0.7,
|
60 |
-
top_p=0.9,
|
61 |
-
top_k=50,
|
62 |
-
do_sample=True,
|
63 |
-
)
|
64 |
-
|
65 |
-
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
66 |
-
|
67 |
-
|
68 |
-
# 3. Gradio ์ธํฐํ์ด์ค
|
69 |
-
demo = gr.Interface(
|
70 |
-
fn=generate_response,
|
71 |
-
# inputs=gr.Textbox(lines=2, placeholder="์ง๋ฌธ์ ์
๋ ฅํ์ธ์"),
|
72 |
-
inputs="text",
|
73 |
-
outputs="text",
|
74 |
-
title="Law RAG Assistant",
|
75 |
-
description="๋ฒ๋ น ๊ธฐ๋ฐ RAG ํ์ดํ๋ผ์ธ ํ
์คํธ",
|
76 |
-
)
|
77 |
-
|
78 |
-
# demo.launch(server_name="0.0.0.0", server_port=7860) # ๐ API ๋ฐฐํฌ ์ค๋น ๊ฐ๋ฅ
|
79 |
-
demo.launch()
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import spaces
|
3 |
+
import torch
|
4 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
5 |
+
# from retriever.vectordb_rerank import search_documents # ๐ง RAG ๊ฒ์๊ธฐ ๋ถ๋ฌ์ค๊ธฐ
|
6 |
+
from services.rag_pipeline import rag_pipeline
|
7 |
+
|
8 |
+
model_name = "dasomaru/gemma-3-4bit-it-demo"
|
9 |
+
|
10 |
+
|
11 |
+
# 1. ๋ชจ๋ธ/ํ ํฌ๋์ด์ 1ํ ๋ก๋ฉ
|
12 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
13 |
+
# ๐ model์ CPU๋ก๋ง ๋จผ์ ์ฌ๋ฆผ (GPU ์์ง ์์)
|
14 |
+
model = AutoModelForCausalLM.from_pretrained(
|
15 |
+
model_name,
|
16 |
+
torch_dtype=torch.float16, # 4bit model์ด๋๊น
|
17 |
+
device_map="auto", # โ
์ค์: ์๋์ผ๋ก GPU ํ ๋น
|
18 |
+
trust_remote_code=True,
|
19 |
+
)
|
20 |
+
|
21 |
+
# 2. ์บ์ ๊ด๋ฆฌ
|
22 |
+
search_cache = {}
|
23 |
+
|
24 |
+
@spaces.GPU(duration=300)
|
25 |
+
def generate_response(query: str):
|
26 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
27 |
+
"dasomaru/gemma-3-4bit-it-demo",
|
28 |
+
trust_remote_code=True,
|
29 |
+
)
|
30 |
+
model = AutoModelForCausalLM.from_pretrained(
|
31 |
+
"dasomaru/gemma-3-4bit-it-demo",
|
32 |
+
torch_dtype=torch.float16, # 4bit model์ด๋๊น
|
33 |
+
device_map="auto", # โ
์ค์: ์๋์ผ๋ก GPU ํ ๋น
|
34 |
+
trust_remote_code=True,
|
35 |
+
|
36 |
+
)
|
37 |
+
model.to("cuda")
|
38 |
+
|
39 |
+
if query in search_cache:
|
40 |
+
print(f"โก ์บ์ ์ฌ์ฉ: '{query}'")
|
41 |
+
return search_cache[query]
|
42 |
+
|
43 |
+
# ๐ฅ rag_pipeline์ ํธ์ถํด์ ๊ฒ์ + ์์ฑ
|
44 |
+
# ๊ฒ์
|
45 |
+
top_k = 5
|
46 |
+
results = rag_pipeline(query, top_k=top_k)
|
47 |
+
|
48 |
+
# ๊ฒฐ๊ณผ๊ฐ list์ผ ๊ฒฝ์ฐ ํฉ์น๊ธฐ
|
49 |
+
if isinstance(results, list):
|
50 |
+
results = "\n\n".join(results)
|
51 |
+
|
52 |
+
search_cache[query] = results
|
53 |
+
# return results
|
54 |
+
|
55 |
+
inputs = tokenizer(results, return_tensors="pt").to(model.device) # โ
model.device
|
56 |
+
outputs = model.generate(
|
57 |
+
**inputs,
|
58 |
+
max_new_tokens=512,
|
59 |
+
temperature=0.7,
|
60 |
+
top_p=0.9,
|
61 |
+
top_k=50,
|
62 |
+
do_sample=True,
|
63 |
+
)
|
64 |
+
|
65 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
66 |
+
|
67 |
+
|
68 |
+
# 3. Gradio ์ธํฐํ์ด์ค
|
69 |
+
demo = gr.Interface(
|
70 |
+
fn=generate_response,
|
71 |
+
# inputs=gr.Textbox(lines=2, placeholder="์ง๋ฌธ์ ์
๋ ฅํ์ธ์"),
|
72 |
+
inputs="text",
|
73 |
+
outputs="text",
|
74 |
+
title="Law RAG Assistant",
|
75 |
+
description="๋ฒ๋ น ๊ธฐ๋ฐ RAG ํ์ดํ๋ผ์ธ ํ
์คํธ",
|
76 |
+
)
|
77 |
+
|
78 |
+
# demo.launch(server_name="0.0.0.0", server_port=7860) # ๐ API ๋ฐฐํฌ ์ค๋น ๊ฐ๋ฅ
|
79 |
+
# demo.launch()
|
80 |
+
demo.launch(debug=True)
|